KLASIFIKASI PENYAKIT PARU-PARU DENGAN MENGGUNAKAN METODE NAÏVE BAYES CLASSIFIER

  • Muhammad Yusril Haffandi Mahasiswa Univeritas Islam Negeri Sultan Syarif Kasim Riau
  • Elin Haerani Universitas Islam Negeri Sultan Syarif Kasim
  • Fadhilah Syafria Universitas Islam Negeri Sultan Syarif Kasim
  • Lola Oktavia Universitas Islam Negeri Sultan Syarif Kasim

Abstract

The lungs are one of the organs of the human body that are very important in the process of respiration. There are several types of lung diseases, including Asthma, Bronchitis, Dyspnea, Pneumonia, COPD, and Tuberculosis. There are difficulties in the classification process, because the symptoms shown by sufferers have similarities between diseases. The purpose of this research is to classify lung disease using the Naive Bayes Classifier method. The choice of this method is because it only requires a small amount of training data to determine the estimated parameters needed in the classification process. This research was conducted at the Regional General Hospital Major General HA Thalib City of Sungai Full from August 3 2022 to September 3 2022. The data taken was in the form of medical records of lung disease patients from July to August as many as 134 patient data containing 19 symptoms disease and 6 disease diagnoses. From the test results using the Rapidminer application and data separation in the form of 34 testing data and 100 training data with a data comparison of 7:3, an accuracy value of 97.06 was obtained.

References

[1] I. Majid and M. Endang Dian Setioningsih, ST, MT, Sumber, SST, “Monitoring BPM, Suhu dan Respirasi Tampil PC via Bluetooth dan Pengiriman Data via SMS (Monitoring BPM dan Pengiriman Data via SMS),” Semin. Tugas Akhir, 2018.

[2] A. S. Pratama, S. Safrizal, and J. Iriani, “Sistem Pakar Mendiagnosa Penyakit Gangguan Pernafasan Oleh Asap Rokok Menggunakan Metode Dempster Shafer,” It (Informatic Tech. J., vol. 9, no. 1, p. 79, 2021, doi: 10.22303/it.9.1.2021.79-88.

[3] R. Wana Dwi Putra, E. Prasetyo, and U. Chotijah, “Klasifikasi Penyakit Paru-Paru Menggunakan Metode Naive Bayes Studi Kasus Rs.Pku Muhammadiyah Ujung Pangkah Gresik,” no. 0561, p. 740186, 2020, [Online]. Available: http://eprints.umg.ac.id/3669/.

[4] S. J. S. Tyas, M. Febianah, F. Solikhah, A. L. Kamil, and W. A. Arifin, “Analisis Perbandingan Algoritma Naive Bayes Dan C.45 Dalam Klasifikasi Data Mining Untuk Memprediksi Kelulusan,” J. Teknol. Inf. Dan Komun., vol. 8, no. 1, pp. 86–99, 2021, [Online]. Available: https://jurnal.plb.ac.id/index.php/tematik/article/view/576/365.

[5] D. Larassati, A. Zaidah, and A. Sarika, “Sistem Prediksi Penyakit Jantung Menggunakan Metode Naive Bayes,” J. Rekayasa Elektro Sriwij., vol. 2, no. 2, pp. 151–157, 2021, doi: 10.36706/jres.v2i2.29.

[6] R. Nofitri and J. Eska, “Implementasi Data Mining Klasifikasi C4.5 Dalam Menentukan Kelayakan Pengambilan Kredit,” Semin. Nas. R., vol. 9986, no. September, pp. 307–310, 2018, [Online]. Available: https://www.jurnal.stmikroyal.ac.id/index.php/senar/article/view/192/136.

[7] M. Iqbal et al., “Implementasi Metode Certainty Factor dalam Sistem Pakar Diagnosis Penyakit Paru-Paru Berbasis Android,” Coding J. Komput. dan Apl., vol. 07, no. 03, pp. 155–164, 2019.

[8] F. N. Azizah and D. Juniati, “Analisis Jenis Penyakit Paru-Paru Berdasarkan Chest X-Ray Menggunakan Metode Fuzzy C-Means,” MATHunesa J. Ilm. Mat., vol. 9, no. 2, pp. 322–331, 2021, doi: 10.26740/mathunesa.v9n2.p322-331.

[9] A. S. Mulyani, “Pemanasan Global, Penyebab, Dampak dan Antisipasinya,” Artik. Pengabdi. Masy., pp. 1–27, 2021, [Online]. Available: http://repository.uki.ac.id/4908/1/PEMANASANGLOBAL.pdf.

[10] J. Abidin, F. Artauli Hasibuan, K. Kunci, P. Udara, and D. Gauss, “Pengaruh dampak pencemaran udara terhadap kesehatan untuk menambah pemahaman masyarakat awam tentang bahaya dari polusi udara,” Pros. SNFUR-4, no. September, pp. 1–7, 2019, [Online]. Available: https://snf.fmipa.unri.ac.id/wp-content/uploads/2019/09/18.-OFMI-3002.pdf.

[11] D. Kurniawan, F. Eka Febriansyah, and A. Amidya, “Implementasi Pengujian Theorema Bayes Pada Studi Kasus Pemilihan Smartphone Android,” J. Komputasi, vol. 6, no. 2, pp. 11–14, 2018, doi: 10.23960/komputasi.v6i2.1744.

[12] M. F. Rifai, H. Jatnika, and B. Valentino, “Penerapan Algoritma Naïve Bayes Pada Sistem Prediksi Tingkat Kelulusan Peserta Sertifikasi Microsoft Office Specialist (MOS),” Petir, vol. 12, no. 2, pp. 131–144, 2019, doi: 10.33322/petir.v12i2.471.

[13] I. Purnamasari, “Analisa Klasifikasi Loyalitas Siswa Lembaga Pendidikan Tari dengan Metode Naïve Bayes,” J. Ilm. Komputasi, vol. 19, no. 1, pp. 59–68, 2020, doi: 10.32409/jikstik.19.1.157.

[14] B. M. Sapata and D. Juniati, “Klasifikasi Penyakit Paru Berdasarkan Citra X-Ray Thorax Menggunakan Metode Fraktal Box Counting,” MATHunesa, vol. 7, no. 3, pp. 228–235, 2019.

[15] S. Suprianto, “Perbandingan Metode Naïve Bayes Classifier Dan Holistic Lexicon Based Dalam Analisis Sentimen Angket Mahasiswa,” JSI J. Sist. Inf., vol. 11, no. 2, pp. 1763–1771, 2019, doi: 10.36706/jsi.v11i2.9140.

[16] A. C. Adi, D. P. Lestari, F. S. S. Elsa, and Y. Sabui, “Online School Sentiment Analysis in Indonesia on Twitter Using The Naïve Bayes Classifier and Rapid Miner Tools,” Int. J. Innov. Sci. Res. Technol., vol. 71, no. 1, pp. 785–788, 2022, [Online]. Available: https://ijisrt.com/assets/upload/files/IJISRT22JAN782_(1).pdf.

[17] A. Damuri, U. Riyanto, H. Rusdianto, and M. Aminudin, “Implementasi Data Mining dengan Algoritma Naïve Bayes Untuk Klasifikasi Kelayakan Penerima Bantuan Sembako,” J. Ris. Komput., vol. 8, no. 6, pp. 219–225, 2021, doi: 10.30865/jurikom.v8i6.3655.

[18] D. Novianti, “Implementasi Algoritma Naïve Bayes Pada Data Set Hepatitis Menggunakan Rapid Miner,” Paradig. - J. Komput. dan Inform., vol. 21, no. 1, pp. 49–54, 2019, doi: 10.31294/p.v21i1.4979.

[19] B. Gunawan, H. S. Pratiwi, and E. E. Pratama, “Sistem Analisis Sentimen pada Ulasan Produk Menggunakan Metode Naive Bayes,” J. Edukasi dan Penelit. Inform., vol. 4, no. 2, p. 113, 2018, doi: 10.26418/jp.v4i2.27526.

[20] D. T. Satya and N. Hidayat, “Sistem Pakar Diagnosis Penyakit Sapi Ternak Potong Menggunakan Metode Naïve Bayes - Certainty Factor,” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 2, no. 10, pp. 3406–3410, 2018, [Online]. Available: https://j-ptiik.ub.ac.id/index.php/j-ptiik/article/view/2626/978.
Published
2022-12-23
How to Cite
HAFFANDI, Muhammad Yusril et al. KLASIFIKASI PENYAKIT PARU-PARU DENGAN MENGGUNAKAN METODE NAÏVE BAYES CLASSIFIER. Jurnal Tekinkom (Teknik Informasi dan Komputer), [S.l.], v. 5, n. 2, p. 176-186, dec. 2022. ISSN 2621-3079. Available at: <http://jurnal.murnisadar.ac.id/index.php/Tekinkom/article/view/649>. Date accessed: 01 oct. 2023. doi: https://doi.org/10.37600/tekinkom.v5i2.649.
Section
Articles