KLASIFIKASI WILAYAH RAWAN PANGAN DI KABUPATEN ACEH UTARA MENGGUNAKAN ALGORITMA K-NEAREST NEIGHBOR
Abstract
Food insecurity is a condition where food security is not achieved, so food insecurity can be interpreted as a condition of not providing enough food for individuals or individuals to be able to live healthy, active, and productive lives sustainably The Department of Agriculture and Food of North Aceh Regency has compiled a map of the FSVA of North Aceh Regency but it is known that the process of collecting and summarizing FSVA data takes a long time thus resulting in slow handling. This study classifies regional data to classify food insecurity priorities quickly and efficiently using the K-Nearest Neighbor (KNN) algorithm. The data used in this study were 852 regional data. Then it is grouped into 6 priorities, namely Priority 1, Priority 2, Priority 3, Priority 4, Priority 5, Priority 6. The data is divided into 2, namely 70% is used for training data and 30% is used as test data. The results of the classification of food insecure areas using the K-Nearest Neighbor algorithm are Priority 1 consisting of 7 villages (2.73%), Priority 2 consisting of 24 villages (9.37%), Priority 3 consisting of 4 villages (1.56%) with the Euclidean Distance approach, this study achieved an accuracy rate of 86%.
References
[2] Peraturan Pemerintah Republik Indonesia Nomor 86 Tahun 2019 Tentang Keamanan Pangan, “Peraturan Pemerintah Republik Indonesia Nomor 86 Tahun 2019 Tentang Keamanan Pangan,” Peratur. Pemerintah Tentang Keamanan Pangan, vol. 2019, no. 86, pp. 1–102, 2019.
[3] W. Sulistyo, “Model Klasifikasi Ketahanan Dan Kerentanan Pangan Menggunakan Metode Spatial Path Analysis (Studi Kasus Provinsi Jawa Tengah),” p. 342363, 2019.
[4] Undang - Undang Pangan Nomor 18, “UU RI NO 18 TAHUN 2012 TENTANG PANGAN,” vol. 66, pp. 37–39, 2012.
[5] rahayu deny danar dan alvi furwanti Alwie, A. B. Prasetio, R. Andespa, P. N. Lhokseumawe, and K. Pengantar, “Tugas Akhir Tugas Akhir,” J. Ekon. Vol. 18, Nomor 1 Maret201, vol. 2, no. 1, pp. 41–49, 2020.
[6] BPN, “Peta Ketahanan Dan Kerentanan Pangan FSVA Kab. Aceh Utara,” no. July, pp. 1–23, 2020.
[7] Badan Ketahanan Pangan, “Panduan Penyusunan Peta Ketahanan dan Kerentanan Pangan (Food Security and Vulnerability Atlas/2020) Kabupaten 2020,” vol. 2020, pp. 1–78, 2020,
[8] F. Istighfarizky, N. A. Sanjaya ER, I. M. Widiartha, L. G. Astuti, I. G. N. A. C. Putra, and I. K. G. Suhartana, “Klasifikasi Jurnal menggunakan Metode KNN dengan Mengimplementasikan Perbandingan Seleksi Fitur,” JELIKU (Jurnal Elektron. Ilmu Komput. Udayana), vol. 11, no. 1, p. 167, 2022, doi: 10.24843/jlk.2022.v11.i01.p18.
[9] I. M. Karo Karo and H. Hendriyana, “Klasifikasi Penderita Diabetes menggunakan Algoritma Machine Learning dan Z-Score,” J. Teknol. Terpadu, vol. 8, no. 2, pp. 94–99, 2022, doi: 10.54914/jtt.v8i2.564.
[10] C. F. A. Ilham Sahputra , Bustami2, “The Nutritional Classification of Pregnant WomenUsing Support Vector Machine (SVM),” vol. 6, no. January, pp. 403–413, 2023.
[11] A. Rudiyan, A. E. Dzulkifli, and K. Munazar, “Klasifikasi Kebakaran Hutan Menggunakan Metode K-Nearest Neighbor : Studi Kasus Hutan Provinsi Kalimantan Barat,” JTIM J. Teknol. Inf. dan Multimed., vol. 3, no. 4, pp. 195–202, 2022, doi: 10.35746/jtim.v3i4.177.
[12] W. LIDYA, H. YOZZA, and F. YANUAR, “Klasifikasi Daerah Tertinggal Di Indonesia Menggunakan Metode Naive Bayea Classifier,” J. Mat. UNAND, vol. 9, no. 1, p. 23, 2020, doi: 10.25077/jmu.9.1.23-29.2020.
[13] A. Mahmud, A. Pangestika, A. P. Ramadhanty, G. M. Putra, G. S. N. D. S. Putri, and R. Nooraeni, “Klasifikasi Status Desa/Kelurahan DIY (Yogyakarta) Menggunakan Model Decision Tree (Studi Kasus Data Praktik Kerja Lapangan Politeknik Statistika STIS Tahun 2020),” Eng. Math. Comput. Sci. J., vol. 3, no. 1, pp. 33–41, 2021, doi: 10.21512/emacsjournal.v3i1.6787.
[14] Y. Yahya and W. Puspita Hidayanti, “Penerapan Algoritma K-Nearest Neighbor Untuk Klasifikasi Efektivitas Penjualan Vape (Rokok Elektrik) pada ‘Lombok Vape On,’” Infotek J. Inform. dan Teknol., vol. 3, no. 2, pp. 104–114, 2020, doi: 10.29408/jit.v3i2.2279.
[15] P. Putra, A. M. H Pardede, and S. Syahputra, “Analisis Metode K-Nearest Neighbour (Knn) Dalam Klasifikasi Data Iris Bunga,” J. Tek. Inform. Kaputama, vol. 6, no. 1, pp. 297–305, 2022.
[16] P. T. J. Putera, W. Ode, N. Kadir, and B. Pramono, “PENERAPAN DATA MINING DENGAN METODE K- NEAREST NEIGHBOR (KNN) UNTUK MENGELOMPOKAN MINAT KONSUMEN ASURANSI,” vol. 5, no. 1, pp. 97–104, 2019.
[17] J. T. Informatika and P. A. K. Dan, “PERBANDINGAN ALGORITMA K-MEANS DAN NAÏVE BAYES UNTUK MEMPREDIKSI PRIORITAS PEMBAYARAN TAGIHAN RUMAH SAKIT BERDASARKAN TINGKAT KEPENTINGAN PADA PT. PERTAMINA (PERSERO),” vol. 13, no. 2, pp. 1–8, 2021.
[18] R. K. Dinata and N. Hasdyna, “WILAYAH BIREUEN MENGGUNAKAN ALGORITMA K-NEAREST NEIGHBORS BERBASIS WEB,” vol. 5, no. 1, pp. 33–37, 2020.
[19] D. A. Nasution, H. H. Khotimah, and N. Chamidah, “Perbandingan Normalisasi Data untuk Klasifikasi Wine Menggunakan Algoritma K-NN,” Comput. Eng. Sci. Syst. J., vol. 4, no. 1, p. 78, 2019, doi: 10.24114/cess.v4i1.11458.
[20] A. Karim, F. Nurhadi, I. K. O. Setiawan, I. A. Rizky, and R. Br. Manurung, “Pengaruh Normalisasi Data pada Klasifikasi Harga Ponsel Berdasarkan Spesifikasi Menggunakan Klasifikasi Naive Bayes dan Multinomial Logistic Regression,” J. Rekayasa Elektro Sriwij., vol. 4, no. 1, pp. 8–16, 2023, doi: 10.36706/jres.v4i1.59.