PERBANDINGAN PENERAPAN ALGORITMA K-MEANS DAN FUZZY C-MEANS DALAM ANALISIS CLUSTERING TERHADAP PERGERAKAN HARGA HISTORIS SAHAM BANK RAKYAT INDONESIA

  • Winda Nia Purba Universitas Prima Indonesia
  • Ricky Hartanto Universitas Prima Indonesia

Abstract

This study aims to analyze and compare the application of K-Means and Fuzzy C-Means algorithms for clustering historical stock price movements of Bank Rakyat Indonesia (BRI). Clustering is a method that groups data based on similarities, crucial in stock data analysis to aid more precise investment decision-making. The K-Means algorithm deterministically assigns each data point to a single cluster, while Fuzzy C-Means allows partial membership across multiple clusters, offering greater flexibility. The research findings indicate that the K-Means algorithm forms three primary clusters with a Silhouette Score of 0.4667, which defines clusters more clearly than Fuzzy C-Means, which has a score of 0.4199. The clusters produced by K-Means provide better-defined separations among stocks with medium, high, and low prices, based on price movements and transaction volume. In contrast, Fuzzy C-Means, despite its ability to handle overlapping data, results in less clearly defined clusters compared to K-Means. Based on these results, the K-Means algorithm is deemed more effective for clustering analysis in the context of BRI stocks. This research is expected to contribute to the development of more comprehensive stock movement analysis models and support investors in making better-informed investment decisions.

References

[1] S. Dewi, S. Defit, and Y. Yuhandri, “Akurasi Pemetaan Kelompok Belajar Siswa Menuju Prestasi Menggunakan Metode K-Means,” J. Sistim Inf. dan Teknol., pp. 28–33, Mar. 2021, doi: 10.37034/jsisfotek.v3i1.40.
[2] V. M. M. Siregar, K. Sinaga, E. Sirait, A. Manalu, and A. T. Purba, “Sistem pendukung keputusan pemilihan tenaga pendidik terbaik menggunakan metode complex proportional assessment,” TEKINKOM, vol. 7, no. 1, pp. 310–317, 2024, doi: 10.37600/tekinkom.v7i1.1258.
[3] V. M. M. Siregar and N. F. Siagian, “Sistem Informasi Front Office Untuk Peningkatan Pelayanan Pelanggan Dalam Reservasi Kamar Hotel,” J. Tek. Inf. dan Komput., vol. 4, no. 1, pp. 77–82, 2021, doi: 10.37600/tekinkom.v4i1.279.
[4] V. M. M. Siregar, E. Damanik, M. R. Tampubolon, E. I. Malau, E. P. S. Parapat, and D. S. Hutagalung, “Sistem Informasi Administrasi Pinjaman (Kredit) Pada Credo Union Modifikasi (CUM) Berbasis Web,” J. Tekinkom, vol. 3, no. 2, pp. 62–69, 2020, doi: 10.37600/tekinkom.v3i2.193.
[5] H. A. Simbolon and V. M. M. Siregar, “Perancangan Sistem Informasi Berbasis E-Commerce Untuk Peningkatan Penjualan Produk Jersey Olah Raga,” J. Tek. Inf. dan Komput., vol. 1, no. 2, pp. 49–54, 2018.
[6] F. Sinuraya et al., “WEB-BASED FOOD ORDERING INFORMATION SYSTEM STUDI,” pp. 7–11, 2021.
[7] F. A. Sianturi, “Penerapan Algoritma Apriori Untuk Penentuan Tingkat Pesanan,” Mantik Penusa, vol. 2, no. 1, pp. 50–57, 2018.
[8] E. Damanik and I. M. Siregar, “PENGEMBANGAN SISTEM CUSTOMER RELATIONSHIP MANAGEMENT BERBASIS WEB PADA PT. TERUS MEGA TARA JAKARTA,” J. Tek. Inf. dan Komput., vol. 4, no. 1, pp. 60–69, 2021, doi: 10.37600/tekinkom.v4i1.278.
[9] Kisno, M. R. Tampubolon, Calen, A. T. Marpaung, V. M. M. Siregar, and S. Sirait, “Triwaca dan Literacycloud : Ragam Membaca Menyenangkan selama Pandemi Virus Corona,” J. Surya Masy., vol. 4, no. 1, pp. 146–153, 2021.
[10] V. M. M. Siregar, “Perancangan Website Sebagai Media Promosi Dan Penjualan Produk,” TAM (Technology Accept. Model., vol. 9, no. 1, pp. 15–21, 2018.
[11] W. Purba, D. Ujung, T. Wahyuni, L. Sihaloho, and J. Damanik, “Perancangan Sistem Informasi Pemesanan Tiket Online Pada Kmp . Ihan Batak Berbasis,” vol. 3, no. 2, pp. 65–75, 2020.
[12] J. Simatupang and S. Sianturi, “Perancangan Sistem Informasi Pemesanan Tiket Bus Pada PO. Handoyo Berbasis Online,” J. Intra-Tech, vol. 3, no. 2, pp. 11–25, 2019.
[13] I. M. Siregar, N. F. Siagian, and V. M. M. Siregar, “Design of an Electric Light Control Device Using Arduino Uno Microcontroller-Based Short Message Service,” IOTA, vol. 02, no. 2, pp. 98–110, 2022, doi: 10.31763/iota.v2i2.560.
[14] V. M. M. Siregar and N. F. Siagian, “Implementation of Fingerprint Sensors for Fingerprint Reader Prototypes Using a Microcontroller,” IOTA, vol. 02, no. 1, pp. 47–59, 2022, doi: 10.31763/iota.v2i1.559.
[15] R. S. D. Wijaya, Adiwijaya, Andriyan B Suksmono, and Tati LR Mengko, “Segmentasi Citra Kanker Serviks Menggunakan Markov Random Field dan Algoritma K-Means,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 5, no. 1, pp. 139–147, Feb. 2021, doi: 10.29207/resti.v5i1.2816.
[16] Fadellia Azzahra, N. Suarna, and Y. Arie Wijaya, “Penerapan Algoritma Random Forest Dan Cross Validation Untuk Prediksi Data Stunting,” Kopertip J. Ilm. Manaj. Inform. dan Komput., vol. 8, no. 1, pp. 1–6, Feb. 2024, doi: 10.32485/kopertip.v8i1.238.
[17] R. K. ARMANDA, “Prediksi Pertumbuhan Penduduk Kecamatan Cimaragas Kabupaten Ciamis Dengan Metode Artificial Neural,” J. Algoritm., vol. 3, no. 2, Apr. 2023, doi: 10.35957/algoritme.v3i2.3709.
[18] A. Yuliarum Qur’ani and R. Sari Widiastuti, “Implementasi Fuzzy C-Means (FCM) dan Generalized Fuzzy C-Means (GFCM) dalam Clustering Produk Domestik Regional Bruto (PDRB) Menurut Pengeluaran,” ULIL ALBAB J. Ilm. Multidisiplin, vol. 2, no. 9 SE-Articles, pp. 4203–4214, Aug. 2023, doi: 10.56799/jim.v2i10.2258.
[19] S. P. Tamba, M. D. Batubara, W. Purba, M. Sihombing, V. M. Mulia Siregar, and J. Banjarnahor, “Book data grouping in libraries using the k-means clustering method,” J. Phys. Conf. Ser., vol. 1230, no. 1, p. 012074, Jul. 2019, doi: 10.1088/1742-6596/1230/1/012074.
[20] S. Sarbaini, Z. Zukrianto, and N. Nazaruddin, “Pengaruh Tingkat Kemiskinan Terhadap Pembangunan Rumah Layak Huni Di Provinsi Riau Menggunakan Metode Analisis Regresi Sederhana,” J. Teknol. dan Manaj. Ind. Terap., vol. 1, no. 3, pp. 131–136, Sep. 2022, doi: 10.55826/tmit.v1iIII.46.
[21] Anggara Cahya Putra and K. Dwi Hartomo, “Optimalisasi Penyaluran Bantuan Pemerintah Untuk UMKM Menggunakan Metode Fuzzy C-Means,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 5, no. 3, pp. 474–482, Jun. 2021, doi: 10.29207/resti.v5i3.2980.
[22] Mahmudi, R. Goejantoro, and F. D. T. Amijaya, “Comparison of C-Means and Fuzzy C-Means Methods in the Districts/Cities on the Island of Kalimantan Based on the 2019 HDI Indicators,” J. EKSPONENSIAL, vol. 12, no. 2, pp. 193–1999, 2021.
[23] Faza Adhzima, Yandra Arkeman, and Irman Hermadi, “The Clustering Rice Plant Diseases Using Fuzzy C-Means and Genetic Algorithm,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 6, no. 2, pp. 240–245, Apr. 2022, doi: 10.29207/resti.v6i2.3912.
[24] Y. Elda, S. Defit, Y. Yunus, and R. Syaljumairi, “Klasterisasi Penempatan Siswa yang Optimal untuk Meningkatkan Nilai Rata-Rata Kelas Menggunakan K-Means,” J. Inf. dan Teknol., pp. 103–108, Sep. 2021, doi: 10.37034/jidt.v3i3.130.
[25] M. Jordy, A. Triayudi, and I. D. Sholihati, “Analisis Segmentasi Recency dan Customer Value Pada AVANA Indonesia Dengan Algoritma K-Means dan Model RFM (Recency, Frequency and Monetary),” J. Inf. Syst. Res., vol. 4, no. 2, pp. 579–589, Jan. 2023, doi: 10.47065/josh.v4i2.2950.
[26] H. Syukron, M. Fauzi Fayyad, F. Junita Fauzan, Y. Ikhsani, and U. Rizkya Gurning, “Perbandingan K-Means K-Medoids dan Fuzzy C-Means untuk Pengelompokan Data Pelanggan dengan Model LRFM,” MALCOM Indones. J. Mach. Learn. Comput. Sci., vol. 2, no. 2, pp. 76–83, 2022, doi: 10.57152/malcom.v2i2.442.
[27] T. Hidayat, “Klasifikasi Data Jamaah Umroh Menggunakan Metode K-Means Clustering,” J. Sistim Inf. dan Teknol., pp. 19–24, Feb. 2022, doi: 10.37034/jsisfotek.v4i1.115.
Published
2024-12-31
How to Cite
PURBA, Winda Nia; HARTANTO, Ricky. PERBANDINGAN PENERAPAN ALGORITMA K-MEANS DAN FUZZY C-MEANS DALAM ANALISIS CLUSTERING TERHADAP PERGERAKAN HARGA HISTORIS SAHAM BANK RAKYAT INDONESIA. Jurnal Teknik Informasi dan Komputer (Tekinkom), [S.l.], v. 7, n. 2, p. 865-872, dec. 2024. ISSN 2621-3079. Available at: <https://jurnal.murnisadar.ac.id/index.php/Tekinkom/article/view/1214>. Date accessed: 17 may 2025. doi: https://doi.org/10.37600/tekinkom.v7i2.1214.
Section
Articles