SEGMENTASI PELANGGAN MENGGUNAKAN K-MEANS CLUSTERING DI TOKO RETAIL
Abstract
The accumulated customer data can be processed to become a reference for a store's marketing strategy. In addition, understanding and recognizing customer characteristics can help create communication in order to offer products and recommend products that suit the needs of each customer, so that customers feel happy and comfortable shopping at the store. So far, customer data is only stored as an archive without knowing the benefits that can be taken from these customer data. In order to improve promotions to attract new customers and retain old customers, customer segmentation is needed to be able to group customers according to their characteristics and shopping behavior. This research uses customer data from Dan+Dan Telukjambe 2 store which has 2000 rows with 8 attributes. The data is grouped using the K-Means algorithm and the Elbow method in providing the best number of clusters. The number of clusters given by the Elbow method is k = 4, 5, and 6, then evaluated using the Silhouette Coefficient and gives the result that k = 6 is the most optimal cluster with the Silhouette Coefficient result almost close to 0, which is 0.3722797110917646. So that the customer data is grouped into 6 clusters, namely cluster 0, cluster 1, cluster 2, cluster 3, cluster 4, cluster 5, cluster 6. These results can be a reference in developing marketing. These results can be used as a reference in developing a marketing strategy that suits the characteristics of customers according to the existing cluster.
References
[2] N. Rahmawati Syarif and Windarto, “Aplikasi Data Mining Dengan Menggunakan Algoritma Fuzzy C-Means dan Metode Recency Frequency Monetary (RFM) Untuk Pengelompokan Pelanggan pada PT Eka Cipta Rasa,” 2018.
[3] A. Rosadi and I. H. Ikasari, “Analisa Peran Sistem Informasi Manajemen Terhadap Perkembangan Usaha Mikro, Kecil, dan Menengah (UMKM) dan Peternakan,” JRIIN: Jurnal Riset Informatika dan Inovasi, vol. 1, no. 2, 2023, [Online]. Available: https://journal.mediapublikasi.id/index.php/jriin
[4] I. Ariati, R. Nugraha Norsa, L. Akhsan, and J. Heikal, “SEGMENTASI PELANGGAN MENGGUNAKAN K-MEANS CLUSTERING STUDI KASUS PELANGGAN UHT MILK GREENFIELD,” Jurnal Ilmiah Indonesia, vol. 2023, no. 7, pp. 629–643, 2023, doi: 10.36418/cerdika.xxx.
[5] Y. Suhanda, I. Kurniati, and S. Norma, “Penerapan Metode Crisp-DM Dengan Algoritma K-Means Clustering Untuk Segmentasi Mahasiswa Berdasarkan Kualitas Akademik,” Jurnal Teknologi Informatika dan Komputer, vol. 6, no. 2, pp. 12–20, Sep. 2020, doi: 10.37012/jtik.v6i2.299.
[6] I. Ahmad Fauzi and R. Danar Dana, “Implementasi Data Mining Clustering Dalam Mengelompokan Kasus Perceraian Yang Terjadi Di Provinsi Jawa Barat Menggunakan Algoritma K-Means,” Jurnal Riset Ilmu Manajemen dan Kewirausahaan, vol. 1, no. 4, 2023.
[7] T. Ayudhea Novia, D. Swanjaya, and R. Wulaningrum, “Analisis Clustering Aplikasi Laporan Kasus Kekerasan,” 2022.
[8] N. Hidayati, Kasini, and S. Aulia Rahmah, “Clasterization Of Zeeida Product Sales Using K-Means Method In Medan Distributors,” Jurnal Mantik, vol. 6, no. 2, 2022.
[9] Saifullah and N. Hidayati, “PENGELOMPOKAN PERSENTASE BUTA HURUF UMUR 15-44 MENURUT PROVINSI MENGGUNAKAN ALGORITMA K-MEANS,” Kumpulan jurnaL Ilmu Komputer (KLIK), vol. 07, no. 3, p. 230, 2020.
[10] W. A. Taqwim, N. Y. Setiawan, and F. A. Bachtiar, “Analisis Segmentasi Pelanggan Dengan RFM Model Pada Pt. Arthamas Citra Mandiri Menggunakan Metode Fuzzy C-Means Clustering,” 2019. [Online]. Available: http://j-ptiik.ub.ac.id
[11] N. Aulia Permatasari, Y. Herry Chrisnanto, A. Kania Ningsih, J. Terusan Jendral Sudirman, C. Selatan, and C. Jawa Barat, “Segmentasi Kasus Data Kematian Covid 19 Di Jawa Barat Menggunakan Algoritma DBSCAN Universitas Jendral Achmad Yani,” 2023. [Online]. Available: http://ijespgjournal.org
[12] N. H. Harani, C. Prianto, and F. A. Nugraha, “Segmentasi Pelanggan Produk Digital Service Indihome Menggunakan Algoritma K-Means Berbasis Python,” Jurnal Manajemen Informatika (JAMIKA), vol. 10, no. 2, 2020, doi: 10.34010/jamika.v10i2.
[13] N. Mirantika, T. S. Syamfithriani, and R. Trisudarmo, “Implementasi Algoritma K-Medoids Clustering Untuk Menentukan Segmentasi Pelanggan,” JURNAL NUANSA INFORMATIKA, vol. 17, no. 1, pp. 2614–5405, 2023, doi: 10.25134/nuansa.
[14] W. Widyawati, W. L. Y. Saptomo, and Y. R. W. Utami, “Penerapan Agglomerative Hierarchical Clustering Untuk Segmentasi Pelanggan,” Jurnal Ilmiah SINUS, vol. 18, no. 1, p. 75, Jan. 2020, doi: 10.30646/sinus.v18i1.448.
[15] N. Basuni and Amril Mutoi Siregar, “Comparison of the Accuracy of Drug User Classification Models Using Machine Learning Methods,” Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), vol. 7, no. 6, pp. 1348–1353, Dec. 2023, doi: 10.29207/resti.v7i6.5401.
[16] Tukino and B. Huda, “PENERAPAN ALGORITMA K-MEANS UNTUK MENDUKUNG KEPUTUSAN DALAM PEMILIHAN TEMA TUGAS AKHIR PADA PRODI SISTEM INFORMASI UNIVERSITAS BUANA PERJUANGAN KARAWANG,” TechnoXplore Jurnal Ilmu Komputer & Teknologi Informasi, 2019.
[17] A. P. Disi and B. Sumargo, “PENGELOMPOKAN PENGGUNA INTERNET DENGAN METODE K-MEANS CLUSTERING,” Jurnal Statistika dan Aplikasinya (JSA, vol. 3, no. 1, 2019.
[18] S. Permata Sari and R. Amanda Putri, “Analisis Dan Visualisasi Data Penjualan Menggunakan Exploratory Data Analysis dan K-Means Clustering,” Jurnal Sistem Komputer dan Informatika (JSON) Hal: 423−, vol. 433, no. 2, 2023, doi: 10.30865/json.v5i2.7180.
[19] S. B. H. Sakur, M. Silangen, and D. Tuwohingide, “Penerapan Algoritme K-Means Cluster dan Metode TOPSIS pada Pemilihan Mahasiswa Kunjungan Industri,” Jutisi: Jurnal Ilmiah Teknik Informatika dan Sistem Informasi, vol. 11, no. 3, 2022.
[20] A. Satriawan, R. Andreswari, and O. N. Pratiwi, “SEGMENTASI PELANGGAN TELKOMSEL MENGGUNAKAN METODE CLUSTERING DENGAN RFM MODEL DAN ALGORITMA K-MEANS TELKOMSEL CUSTOMER SEGMENTATION USING CLUSTERING METHOD WITH RFM MODEL AND K-MEANS ALGORITHM,” e-Proceeding of Engineering, vol. 8, no. 2, 2021.
[21] N. Puspitasari, J. A. Widians, and N. B. Setiawan, “Customer segmentation using bisecting k-means algorithm based on recency, frequency, and monetary (RFM) model,” Jurnal Teknologi dan Sistem Komputer, vol. 8, no. 2, pp. 78–83, Apr. 2020, doi: 10.14710/jtsiskom.8.2.2020.78-83.
[22] M. D. Nurfalah, “PROVINCIAL GROUPING IN INDONESIA BASED ON A LEARNING QUALITY INDICATOR USING CLUSTER K-MEANS AND FUZZY C-MEANS METHOD,” 2018.