ANALISIS PENILAIAN KINERJA DOSEN MENGGUNAKAN METODE ADAPTIVE NEURON-FUZZY INFERENCE SYSTEM (ANFIS)

  • Rut Ronauli Hutagaol Universitas Prima Indonesia
  • Aida Elda Afriza Universitas Prima Indonesia
  • Mohammad Irfan Fahmi Universitas Prima Indonesia

Abstract

This research examines the performance of lecturers at Universitas Prima Indonesia using the Adaptive Neuro-Fuzzy Inference System (ANFIS) method to evaluate and enhance teaching quality. The research employs a quantitative approach, collecting data through observations, literature reviews, and questionnaires distributed to 100 students from the Faculty of Science and Technology. Four input variables used are pedagogical competence, professional competence, personal competence, and social competence. The collected data is analyzed using Matlab with ANFIS, which combines the capabilities of artificial neural networks and fuzzy logic to produce accurate predictions. The analysis results show that the ANFIS method is effective in measuring lecturer performance, with high validation results and low error rates. The ANFIS simulation indicates that the majority of lecturers fall into the "Quite Satisfied" category based on student assessments. This study is expected to make a significant contribution to improving the teaching quality of lecturers at Universitas Prima Indonesia through more accurate and technology-based performance evaluations.

References

[1] M. Mirawan, M. Suhaidi, and E. Elisawati, “Analisis Penilaian Kinerja Dosen Mengajar Menggunakan Logika Fuzzy,” J. Unitek, vol. 13, no. 1, pp. 15–24, 2020, doi: 10.52072/unitek.v13i1.151.
[2] A. Kausar, A. Irawan, Wahyuddin, and Iqbal Fernando, “Implementasi Algoritma Naïve Bayes Classifier Untuk Penilaian Kinerja Dosen,” PROSISKO J. Pengemb. Ris. dan Obs. Sist. Komput., vol. 10, no. 2, pp. 117–127, 2023, doi: 10.30656/prosisko.v10i2.6922.
[3] S. Sirait et al., “Selection of the Best Administrative Staff Using Elimination Et Choix Traduisant La Realite (ELECTRE) Method,” J. Phys. Conf. Ser., vol. 1933, no. 1, p. 012068, Jun. 2021, doi: 10.1088/1742-6596/1933/1/012068.
[4] V. Sihombing et al., “Additive Ratio Assessment (ARAS) Method for Selecting English Course Branch Locations,” J. Phys. Conf. Ser., vol. 1933, no. 1, p. 012070, Jun. 2021, doi: 10.1088/1742-6596/1933/1/012070.
[5] V. M. M. Siregar et al., “Implementation of ELECTRE Method for Decision Support System,” IOP Conf. Ser. Mater. Sci. Eng., vol. 1088, no. 1, p. 012027, Feb. 2021, doi: 10.1088/1757-899x/1088/1/012027.
[6] V. M. M. Siregar, M. R. Tampubolon, E. P. S. Parapat, E. I. Malau, and D. S. Hutagalung, “Decision support system for selection technique using MOORA method,” IOP Conf. Ser. Mater. Sci. Eng., vol. 1088, no. 1, p. 012022, Feb. 2021, doi: 10.1088/1757-899X/1088/1/012022.
[7] Fricles Ariwisanto Sianturi, “Analisa metode teorema bayes dalam mendiagnosa keguguran pada ibu hamil berdasarkan jenis makanan,” Tek. Inf. dan Komput., vol. 2, no. 1, pp. 87–92, 2019.
[8] V. M. M. Siregar and N. F. Siagian, “Sistem Informasi Front Office Untuk Peningkatan Pelayanan Pelanggan Dalam Reservasi Kamar Hotel,” J. Tek. Inf. dan Komput., vol. 4, no. 1, pp. 77–82, 2021, doi: 10.37600/tekinkom.v4i1.279.
[9] V. M. M. Siregar, S. Sonang, and E. Damanik, “SISTEM PENDUKUNG KEPUTUSAN PENENTUAN PELANGGAN TERBAIK MENGGUNAKAN METODE WEIGHTED PRODUCT,” J. Tek. Inf. dan Komput., vol. 4, no. 2, p. 239, Dec. 2021, doi: 10.37600/tekinkom.v4i2.392.
[10] N. A. Sinaga et al., “Decision support system with MOORA method in selection of the best teachers,” in AIP Conference Proceedings, 2022, p. 030020. doi: 10.1063/5.0094437.
[11] S. Sonang, A. T. Purba, and V. M. M. Siregar, “SISTEM PENDUKUNG KEPUTUSAN KELAYAKAN PEMBERIAN PINJAMAN KREDIT MENGGUNAKAN METODE TOPSIS PADA CUM CARITAS HKBP PEMATANGSIANTAR,” J. Tek. Inf. dan Komput., vol. 3, no. 1, p. 25, Sep. 2020, doi: 10.37600/tekinkom.v3i1.131.
[12] V. M. M. Siregar, M. A. Hanafiah, N. F. Siagian, K. Sinaga, and M. Yunus, “Decision Support System For Selecting The Best Practical Work Students Using MOORA Method,” IOTA, vol. 02, no. 4, pp. 270–278, 2022, doi: 10.31763/iota.v2i4.562.
[13] V. M. M. Siregar et al., “Decision support system for selection of food aid recipients using SAW method,” in AIP Conference Proceedings, 2022, p. 030019. doi: 10.1063/5.0094385.
[14] H. Sugara, V. M. M. Siregar, K. Sinaga, M. A. Hanafiah, and H. D. Pardede, “SAW and Electre Methods Implementation for Scholarship Awardee Decision,” IOTA, vol. 01, no. 4, pp. 209–220, 2021, doi: 10.31763/iota.v1i4.496.
[15] V. Marudut and M. Siregar, “Best Employee Selection Using The Additive Ratio Assesment Method,” vol. 03, 2023, doi: 10.31763/iota.v3i1.589.
[16] V. M. M. Siregar and H. Sugara, “SISTEM PENDUKUNG KEPUTUSAN PEMILIHAN SEPEDA MOTOR BEKAS MENGGUNAKAN METODE WASPAS,” J. Tek. Inf. dan Komput., vol. 5, no. 2, p. 263, Dec. 2022, doi: 10.37600/tekinkom.v5i2.393.
[17] E. W. Sari, A. P. Windarto, and R. A. Nasution, “Implementasi Adaptive Neuro Fuzzy Inference System (ANFIS) Dalam Memprediksi Penjualan Roti Kacang,” BEES Bull. Electr. Electron. Eng., vol. 2, no. 3, pp. 74–83, 2022, doi: 10.47065/bees.v2i3.1383.
[18] H. Zakaria and N. Jaya, “Sistem Penilaian Kinerja Dosen Dengan Menggunakan Fuzzy Inference System Metode Mamdani,” J. Artif. Intell. …, vol. 2, no. 4, 2021.
[19] S. Irawan and J. P. Sugiono, “Sistem Pendukung Keputusan Rekomendasi Penilaian Kinerja Karyawan Untuk Menentukan Status Pemberian Reward Level Operator dan Foreman Menggunakan Metode Adaptive Neuro Fuzzy Inference System (ANFIS),” Smatika J., vol. 10, no. 02, pp. 84–93, 2020, doi: 10.32664/smatika.v10i02.501.
[20] K. Kiswanto, B. W. Benny, Y. Yuri, M. Mar, S. Sarwindah, and S. Supardi, “Penerapan Logika ANFIS Sistem Penilaian Kinerja Dosen Pada Tri Dharma dan Perilaku Kerja,” J. Sist. Inf. Bisnis, vol. 12, no. 1, pp. 57–65, 2022, doi: 10.21456/vol12iss1pp57-65.
[21] Y. M. Snae, G. A. Manu, and D. Y. A. Fallo, “Analisis Tingkat Kepuasan Mahasiswa Terhadap Kinerja Dosen Dalam Proses Belajar Mengajar Mengunakan Fuzzy Logic,” HINEF J. Rumpun Ilmu Pendidik., vol. 1, no. 1, pp. 66–77, 2022, doi: 10.37792/hinef.v1i1.428.
[22] Ainun aziz, “Penggunaan Metode Anfis (Adaptive Neuro Fuzzy Inference System) Untuk Prediksi Beban Listrik Jangka Pendek,” JAMI J. Ahli Muda Indones., vol. 3, no. 1, pp. 83–94, 2022, doi: 10.46510/jami.v3i1.45.
[23] B. Hudaya, “Subsidi Kepemilikan Rumah Menggunakan Adaptive,” vol. 3, no. 3, pp. 324–329, 2019.
[24] Gansar Suwanto, R. I. Adam, and Garno, “Identifikasi Citra Digital Jenis Beras Menggunakan Metode Anfis dan Sobel,” J. Inform. Polinema, vol. 7, no. 2, pp. 123–128, 2021, doi: 10.33795/jip.v7i2.406.
[25] M. K. RI, “No TitleΕΛΕΝΗ,” Αγαη, vol. 8, no. 5, p. 55, 2019.
[26] Noeryanti, M. Titah Jatipaningrum, and S. Fariasi, “Memprediksi Indeks Pembangunan Manusia di Daerah Istimewa Yogyakarta Berdasarkan Data 10 Tahun Terakhir Menggunakan Metode Fuzzy Mamdani dan Metode Backpropagation,” J. Rekayasa Dan Inov. Tek. Ind., 2021.
Published
2024-06-30
How to Cite
HUTAGAOL, Rut Ronauli; AFRIZA, Aida Elda; FAHMI, Mohammad Irfan. ANALISIS PENILAIAN KINERJA DOSEN MENGGUNAKAN METODE ADAPTIVE NEURON-FUZZY INFERENCE SYSTEM (ANFIS). Jurnal Tekinkom (Teknik Informasi dan Komputer), [S.l.], v. 7, n. 1, p. 360-369, june 2024. ISSN 2621-3079. Available at: <https://jurnal.murnisadar.ac.id/index.php/Tekinkom/article/view/1331>. Date accessed: 21 july 2024. doi: https://doi.org/10.37600/tekinkom.v7i1.1331.
Section
Articles