PENERAPAN METODE TREND MOMENT UNTUK MEMPREDIKSI JUMLAH PENJUALAN DAN STOK KOPI PADA OMILEN COFFEE

  • Oktafiani Br Ginting Universitas Prima Indonesia
  • Anita Anita Universitas Prima Indonesia
  • Elvi Yolanda Tumanggor Universitas Prima Indonesia

Abstract

This research aims to enhance the efficiency of stock and sales management at Omilen Coffee by applying the Trend Moment Method. Omilen Coffee frequently faces issues with mismatches between coffee stock and customer demand, leading to customer dissatisfaction and increased storage costs. The Trend Moment Method is used to analyze historical sales data and identify trends and seasonal patterns, resulting in more accurate predictions of future stock needs. The research involves the collection of primary and secondary data, data analysis using the Trend Moment Method, prediction validation, and the development of a web-based system to facilitate the prediction and stock management process. The results show that this method is effective in predicting coffee sales and stock, with high prediction accuracy and a MAPE value of 6.28%. The implementation of the web-based system simplifies real-time stock management, enabling Omilen Coffee to plan stock more efficiently, reduce the risk of stock shortages or surpluses, and improve customer satisfaction.

References

[1] Edric and S. P. Tamba, “Prediksi Penyakit Gagal Jantung Dengan Menggunakan Random Forest,” J. Sist. Inf. dan Ilmu Komput. Prima(JUSIKOM PRIMA), vol. 5, no. 2, pp. 176–181, 2022, doi: 10.34012/jurnalsisteminformasidanilmukomputer.v5i2.2445.
[2] W. Purba, W. Siawin, and . H., “Implementasi Data Mining Untuk Pengelompokkan Dan Prediksi Karyawan Yang Berpotensi Phk Dengan Algoritma K-Means Clustering,” J. Sist. Inf. dan Ilmu Komput. Prima(JUSIKOM PRIMA), vol. 2, no. 2, pp. 85–90, 2019, doi: 10.34012/jusikom.v2i2.429.
[3] V. Sinaga, V. Sihombing, and I. Rasyid Munthe, “Pengembangan Model Pohon Keputusan C4.5 untuk Memprediksi Keberhasilan Peluncuran Produk Baru,” J. Ilmu Komput. dan Sist. Inf., vol. 7, no. 1, pp. 87–90, 2024, doi: 10.55338/jikomsi.v7i1.2719.
[4] R. Prayoga, A. Anita, J. Silaban, and S. P. Tamba, “Analisis Metode Trend Moment Dalam Forecasting Untuk Memprediksi Jumlah Penjualan Pada Restoran Ayam Geprek Gokil,” … (Teknik Inf. dan …, vol. 6, pp. 127–134, 2023, doi: 10.37600/tekinkom.v6i1.892.
[5] D. N. Fitriani and P. A. Rakhma Devi, “Implementasi Metode Trend Moment pada Jumlah Produksi Baju Distro Jatirogo,” Nuansa Inform., vol. 16, no. 1, pp. 134–140, 2022, doi: 10.25134/nuansa.v16i1.5329.
[6] R. N. Halim, Y. Kurniawan, and A. H. Mirza, “Penerapan Metode Trend Moment Pada Aplikasi Penjualan Obat Apotek Dinar Mas,” Teknomatika, vol. 13, no. 01, pp. 42–50, 2023.
[7] R. W. Pramesti and R. R. Izzati, “Penerapan Metode Peramalan (Forecast) Penjualan pada Dzikrayaat Business Center Ponorogo,” JAPP J. Akuntansi, Perpajakan, dan Portofolio, vol. Vol. 02, N, no. 01, pp. 29–45, 2022, [Online]. Available: http://journal.umpo.ac.id/index.php/JAPP
[8] F. Patompo and I. A. Salihi, “Prediksi Penjualan Tempered Glass Handphone Xiaomi Menggunakan Metode Least Square,” J. Ilm. Ilmu Komput. Banthayo Lo Komput., vol. 1, no. 2, pp. 92–100, 2022, doi: 10.37195/balok.v1i2.111.
[9] A. Amrullah, E. Affandi, W. Riansyah, and S. Sobirin, “Peramalan Penjualan Bulanan menggunakan metode Trend Moment pada Toko Suamzu Boutique,” J. SAINTIKOM (Jurnal Sains Manaj. Inform. dan Komputer), vol. 19, no. 2, p. 46, 2020, doi: 10.53513/jis.v19i2.2423.
[10] A. N. Safitri and F. A. Sianturi, “Analisa Metode Trend Moment Untuk Peramalan Penjualan Stok Barang Pada Toko Sun Oleh-Oleh,” J. Ilmu Komput. dan Sist. Inf., vol. 3, no. 1.1, pp. 91–102, 2021.
[11] V. M. M. Siregar and M. A. Hanafiah, “Perancangan Aplikasi Augmented Reality Untuk Edukasi Penerapan Konsep Green Economy Dalam Pengembangan Desa Wisata Sebagai Upaya Mewujudkan Pembangunan Berwawasan Lingkungan,” J. TEKINKOM, vol. 6, no. 2, pp. 339–348, 2023, doi: 10.37600/tekinkom.v6i2.950.
[12] V. M. M. Siregar, K. Sinaga, E. Sirait, A. S. Manalu, and M. Yunus, “Classification of Customer Satisfaction Through Machine Learning : An Artificial Neural Network Approach,” IOTA, vol. 3, no. 3, pp. 273–282, 2023, doi: 10.31763/iota.v3i3.643.
[13] P. D. P. Adi et al., “A Performance Evaluation of ZigBee Mesh Communication on the Internet of Things (IoT),” 3rd 2021 East Indones. Conf. Comput. Inf. Technol. EIConCIT 2021, pp. 7–13, 2021, doi: 10.1109/EIConCIT50028.2021.9431875.
[14] V. M. Mulia Siregar and H. Sugara, “Implementation of artificial neural network to assesment the lecturer‘s performance,” IOP Conf. Ser. Mater. Sci. Eng., vol. 420, no. 1, p. 012112, Oct. 2018, doi: 10.1088/1757-899X/420/1/012112.
[15] H. A. Simbolon and V. M. M. Siregar, “Perancangan Sistem Informasi Berbasis E-Commerce Untuk Peningkatan Penjualan Produk Jersey Olah Raga,” J. Tek. Inf. dan Komput., vol. 1, no. 2, pp. 49–54, 2018.
[16] V. M. M. Siregar, E. Damanik, M. R. Tampubolon, E. I. Malau, E. P. S. Parapat, and D. S. Hutagalung, “Sistem Informasi Administrasi Pinjaman (Kredit) Pada Credo Union Modifikasi (CUM) Berbasis Web,” J. Tekinkom, vol. 3, no. 2, pp. 62–69, 2020, doi: 10.37600/tekinkom.v3i2.193.
[17] V. M. M. Siregar, H. Sugara, and G. A. Purba, “Aplikasi Pencatatan Laporan Penjualan Kita-Kita.Net Berbasis Web,” TEKINKOM, vol. 2, no. 1, pp. 80–86, 2019, doi: 10.37600/tekinkom.v2i1.81.
[18] A. T. Purba and V. M. M. Siregar, “Sistem Penyeleksi Mahasiswa Baru Berbasis Web Menggunakan Metode Weighted Product,” TEKINKOM, vol. 3, no. 1, pp. 1–8, 2020, doi: 10.37600/tekinkom.v3i1.117.
[19] E. Damanik and I. M. Siregar, “PENGEMBANGAN SISTEM CUSTOMER RELATIONSHIP MANAGEMENT BERBASIS WEB PADA PT. TERUS MEGA TARA JAKARTA,” J. Tek. Inf. dan Komput., vol. 4, no. 1, pp. 60–69, 2021, doi: 10.37600/tekinkom.v4i1.278.
[20] V. M. M. Siregar, “Perancangan Website Sebagai Media Promosi Dan Penjualan Produk,” TAM (Technology Accept. Model., vol. 9, no. 1, pp. 15–21, 2018.
Published
2024-06-30
How to Cite
BR GINTING, Oktafiani; ANITA, Anita; TUMANGGOR, Elvi Yolanda. PENERAPAN METODE TREND MOMENT UNTUK MEMPREDIKSI JUMLAH PENJUALAN DAN STOK KOPI PADA OMILEN COFFEE. Jurnal Teknik Informasi dan Komputer (Tekinkom), [S.l.], v. 7, n. 1, p. 395-401, june 2024. ISSN 2621-3079. Available at: <https://jurnal.murnisadar.ac.id/index.php/Tekinkom/article/view/1332>. Date accessed: 15 may 2025. doi: https://doi.org/10.37600/tekinkom.v7i1.1332.
Section
Articles