KOMPARASI METODE ALGORITMA KLASIFIKASI PADA ANALISIS SENTIMEN KOMENTAR CYBERBULLYING DI INSTAGRAM

  • Deny Setiawan Wijaya Universitas Bunda Mulia
  • Destriana Widyaningrum Universitas Bunda Mulia

Abstract

Cyberbullying is aggressive behavior through electronic media that has a serious psychological impact on victims, especially artists who are often the target of negative comments that can influence the behavior of other users on social media. This action is not only psychologically and mentally damaging, but is also a cyber crime that needs to be followed up. This research aims to identify and predict negative comments that lead to cyberbullying through text mining with classification and sentiment analysis methods. This study compares two classification methods: Naive Bayes and Decision Tree, to determine which method is more accurate. Data was taken from 1680 comments on Indonesian artists' Instagram accounts, from September 2023 to May 2024, and divided into 80% for training and 20% for testing, so that the results obtained were Naive Bayes showing 80.95% accuracy, 80.95% precision, recall 87.46%, and F1 score 84.02%, while Decision Tree shows accuracy 82.44%, precision 81.68%, recall 82.44%, and F1 score 81.86%. The findings show that Decision Tree has higher accuracy in classifying cyberbullying comments than Naive Bayes.

References

[1] M. F. Naufal, T. Arifin and H. Wirjawan, "Analisis Perbandingan Tingkat Performa Algoritma SVM, Random Forest, dan Naïve Bayes untuk Klasifikasi Cyberbullying pada Media Sosial," Jurnal Riset Sistem Informasi Dan Teknik Informatika, vol. 8, no. 1, pp. 82-90, 2023.
[2] S. Kemp, "Digital 2023 Indonesia," We Are Social, Jakarta, 2023.
[3] E. Ruliyatin and D. Ridhowati, "DAMPAK CYBER BULLYING PADA PRIBADI SISWA DAN PENANGANANNYA DI ERA PANDEMI COVID-19," Jurnal Bikotetik, vol. 5, no. 1, pp. 1-5, 2021.
[4] D. Widyaningrum, "Perancangan User Experience Aplikasi Website Computer Assisted Test (CAT) Menggunakan Five Planes Framework," Journal of Information and Technology, vol. 11, no. 1, pp. 117-187, 2023.
[5] P. W. Setyaningsih and A. Witanti, "Text Mining Repository Untuk Tren Tema Skripsi 2017-2020," Jurnal Informatika dan Teknologi Informasi, vol. 5, no. 2, pp. 131-137, 2022.
[6] N. Aini H, Hengky, M. A. Yusuf and M. A. Akbar, "Mengimplementasikan Metode Naive Bayes Untuk Memprediksi Tingkat Kelulusan Mahasiswa Tepat Waktu," Journal Of Social Science Research, vol. 3, no. 2, pp. 9363-9372, 2023.
[7] A. P. Thenata, "Text Mining Literature Review on Indonesian Social Media," Jurnal Edukasi dan Penelitian Informatika, vol. 7, no. 2, pp. 226-232, 2021.
[8] L. Qadrini, A. Seppewali and A. Aina, "DECISION TREEDAN ADABOOSTPADA KLASIFIKASI PENERIMA PROGRAM BANTUAN SOSIAL," Jurnal Inovasi Penelitian, vol. 2, no. 7, pp. 1959-1966, 2021.
[9] D. Sayhidin, G. Haris and C. Juliane, "Implementasi Data Mining Tingkat Kepemimpinan Siswa dengan KNearest Neighbor, Decision Tree, dan Naïve Bayes," JURNAL MEDIA INFORMATIKA BUDIDARMA, vol. 7, no. 1, pp. 199-206, 2023.
[10] F. M. Fathoni, C. A. Putra and A. L. Nurlaili, "KLASIFIKASI PENYAKIT DAUN ANGGURMENGGUNAKAN METODE K-NEAREST NEIGHBOR BERDASARKAN GRAY LEVEL CO-OCCURRENCE MATRIX," Jurnal Ilmiah Informatika dan Komputer, vol. 3, no. 1, pp. 8-15, 2024.
[11] D. B. Rarasati, A. P. Thenata and A. S. Arief, "Analisis Sentimen Masyarakat Indonesia Terhadap Vaksin Booster COVID-19," JURNAL NASIONAL TEKNIK ELEKTRO DAN TEKNOLOGI INFORMASI, vol. 12, no. 4, pp. 274-279, 2023.
[12] E. Saraswati, Y. Umaidah and A. Voutama, "Penerapan Algoritma Artificial Neural Network untuk Klasifikasi Opini Publik Terhadap Covid-19," Generation Journal, vol. 5, no. 2, pp. 109-118, 2021.
[13] T. Arianti, A. Fa’izi and M. Wulandari, "PERANCANGAN SISTEM INFORMASI PERPUSTAKAAN MENGGUNAKAN DIAGRAM UML (UNIFIED MODELLING LANGUAGE)," Jurnal Ilmiah Komputer Terapan dan Informasi, vol. 1, no. 1, pp. 19-25, 2022.
Published
2024-06-30
How to Cite
WIJAYA, Deny Setiawan; WIDYANINGRUM, Destriana. KOMPARASI METODE ALGORITMA KLASIFIKASI PADA ANALISIS SENTIMEN KOMENTAR CYBERBULLYING DI INSTAGRAM. Jurnal Tekinkom (Teknik Informasi dan Komputer), [S.l.], v. 7, n. 1, p. 466-472, june 2024. ISSN 2621-3079. Available at: <https://jurnal.murnisadar.ac.id/index.php/Tekinkom/article/view/1392>. Date accessed: 21 july 2024. doi: https://doi.org/10.37600/tekinkom.v7i1.1392.
Section
Articles