ANALISIS ULASAN APLIKASI TINDER MENGGUNAKAN ALGORITMA NAÏVE BAYES DENGAN OPTIMASI INFORMATION GAIN

  • Vieri Nurgracie Al Ayyubi Universitas Primakara
  • Nengah Widya Utami Universitas Primakara
  • Eka Grana Aristyana Dewi Universitas Primakara

Abstract

Current technological developments are very rapid, including the scope of developments in information and communication technology. In this digital era, there are more and more types of applications, the existence of this online dating application makes it efficient and effective for people to interact by utilizing the application features available in the application, one of the applications is Tinder. The Tinder application is one of the most downloaded online dating applications, namely 67 million downloads. Users who download the Tinder application can provide reviews or comments on the application with the features provided on Google Play. Seeing the importance of reviews on an application, it is necessary to carry out sentiment analysis which aims to find out how Indonesian users respond to the online dating application Tinder through reviews on Google Play. The algorithm used to classify sentiment is the Naïve Bayes algorithm with the addition of feature selection with Information Gain. The research methodology used is Knowledge Discovery in Database. The results of research using the Naïve Bayes method get an accuracy of 68%, while using the Naïve Bayes method using the Information Gain feature selection gets an accuracy of 78%. Using the Naïve Bayes method using Information Gain feature selection produces higher accuracy results than without using Information Gain feature selection.

References

[1] R. A. Wildan, R. A. Rajagede, and R. Rahmadi, “Analisis Sentimen Politik Berdasarkan Big Data dari Media Sosial Youtube : Sebuah Tinjauan Literatur,” Automata, vol. 2, no. 2, 2021.
[2] A. Saepulrohman, S. Saepudin, and D. Gustian, “Analisis Sentimen Kepuasan Pengguna Aplikasi Whatsapp Menggunakan Algoritma Naïve Bayes Dan Support Vector Machine,” is Best Account. Inf. Syst. Inf. Technol. Bus. Enterp. this is link OJS usf@, vol. 6, no. 2, pp. 91–105, Dec. 2021, doi: 10.34010/aisthebest.v6i2.4919.
[3] A. D. Fitriyani and C. E. Iswahyuningtyas, “Online Dating dalam Relasi Percintaan Friends with Benefit di Media Sosial Whisper,” J. Ilmu Komun., vol. 18, no. 3, p. 340, Dec. 2020, doi: 10.31315/jik.v18i3.3404.
[4] A. Adria, “Polling kumparan: 42,33 Persen Pembaca Cari FWB di Dating App,” https://kumparan.com/, 2022. [Online]. Available: https://kumparan.com/millennial/polling-kumparan-42-33-persen-pembaca-cari-fwb-di-dating-app-1yoi1hSAH2d
[5] M. A. Rizaty, “Pengeluaran Aplikasi Kencan Daring di Indonesia Naik pada 2022,” https://dataindonesia.id/, 2022. [Online]. Available: https://dataindonesia.id/internet/detail/pengeluaran-aplikasi-kencan-daring-di-indonesia-naik-pada-2022
[6] M. A. Rizaty, “Pengguna Aplikasi Kencan Online Tembus 323 Juta Orang pada 2021,” databooks,” https://databoks.katadata.co.id, 2021. [Online]. Available: https://databoks.katadata.co.id/datapublish/2022/02/14/pengguna-aplikasi-kencan-online-tembus-323-juta-orang-pada-2021
[7] N. W. Oktha Pratiwi, N. Widya Utami, and I. Gede Juliana Eka Putra, “Klasifikasi Penentuan Penerima Bantuan Sosial Tunai (BST) Menggunakan Algoritma C4.5 Di Desa Keramas, Gianyar, Bali,” J. Inform. Teknol. dan Sains, vol. 4, no. 3, pp. 101–107, Aug. 2022, doi: 10.51401/jinteks.v4i3.1667.
[8] A. P. Giovani, A. Ardiansyah, T. Haryanti, L. Kurniawati, and W. Gata, “ANALISIS SENTIMEN APLIKASI RUANG GURU DI TWITTER MENGGUNAKAN ALGORITMA KLASIFIKASI,” J. Teknoinfo, vol. 14, no. 2, p. 115, Jul. 2020, doi: 10.33365/jti.v14i2.679.
[9] L. D. Utami et al., “Integrasi Metode Information Gain untuk Seleksi Fitur dan AdaBoost untuk Mengurangi Bias pada Analisis Sentimen Review Restoran Menggunakan Algoritma Naive Bayes,” J. Intell. Syst., vol. 1, no. 2, 2015.
[10] V. M. M. Siregar, “Sistem Pendukung Keputusan Penentuan Insentif Bulanan Pegawai Dengan Menggunakan Metode Naïve Bayes,” SISTEMASI, vol. 7, no. 2, pp. 87–94, 2018.
[11] M. Hakiem, M. A. Fauzi, and Indriati, “Klasifikasi Ujaran Kebencian pada Twitter Menggunakan Metode Naïve Bayes Berbasis N-Gram Dengan Seleksi Fitur Information Gain,” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 3, no. 3, 2019.
[12] M. R. Fahlevvi, “Analisis Sentimen Terhadap Ulasan Aplikasi Pejabat Pengelola Informasi Dan Dokumentasi Kementerian Dalam Negeri Republik Indonesia Di Google Playstore Menggunakan Metode Support Vector Machine,” J. Teknol. dan Komun. Pemerintah., vol. 4, no. 1, pp. 1–13, 2022, doi: 10.33701/jtkp.v4i1.2701.
[13] R. Harman, “Penerapan Data Mining Dalam Memprediksi Pembelian Semen,” Comput. Based Inf. Syst. J., vol. 7, no. 1, pp. 10–17, 2019, doi: 10.33884/cbis.v7i1.1043.
[14] A. Sentimen, “Perbandingan Pelabelan Data dalam Analisis Sentimen Kurikulum Proyek di platform TikTok : Pendekatan Naïve Bayes,” pp. 96–107, 2024, doi: 10.30864/eksplora.v14i1.1093.
[15] A. Baita, Y. Pristyanto, and N. Cahyono, “Analisis Sentimen Mengenai Vaksin Sinovac Menggunakan Algoritma Support Vector Machine (Svm) Dan K-Nearest Neighbor (Knn),” Infos, vol. 4, no. 2, pp. 42–42, 2021.
[16] A. K. S, H. Hs, and Z. F. K, “Media 2024 ANALISIS SENTIMEN MASYARAKAT TERHADAP PELANTIKAN KABINET MERAH PUTIH PADA MEDIA SOSIAL MENGGUNAKAN ALGORITMA NAIVE BAYES,” pp. 1080–1089, 2024.
[17] K. Setiadi, “Komputa : Jurnal Ilmiah Komputer dan Informatika Shopeefood Pada Media Sosial Twitter Menggunakan Algoritma Naive Bayes dan Support Vector Machine ( SVM ) Komputa : Jurnal Ilmiah Komputer dan Informatika,” vol. 12, no. 1, pp. 29–38, 2023.
[18] R. Azhar, A. Surahman, and C. Juliane, “Analisis Sentimen Terhadap Cryptocurrency Berbasis Python TextBlob Menggunakan Algoritma Naïve Bayes,” J. Sains Komput. Inform. (J-SAKTI, vol. 6, no. 1, pp. 267–281, 2022.
[19] S. Syahputra et al., “Analisis Sentimen Jamaah Umrah Di Media Sosial X Menggunakan Algoritma Naive Bayes,” vol. 19, no. x, pp. 107–116, 2024.
[20] R. Pinka et al., “Sentiment Analysis of Public Opinions on the Effectiveness of Online Learning Using NaÏve Bayer Algorithm,” J. Inf. Syst. Informatics Comput. , vol. 6, no. 1, pp. 273–279, 2022, doi: 10.52362/jisicom.v6i1.822.
Published
2024-12-31
How to Cite
AYYUBI, Vieri Nurgracie Al; UTAMI, Nengah Widya; DEWI, Eka Grana Aristyana. ANALISIS ULASAN APLIKASI TINDER MENGGUNAKAN ALGORITMA NAÏVE BAYES DENGAN OPTIMASI INFORMATION GAIN. Jurnal Teknik Informasi dan Komputer (Tekinkom), [S.l.], v. 7, n. 2, p. 1035-1043, dec. 2024. ISSN 2621-3079. Available at: <https://jurnal.murnisadar.ac.id/index.php/Tekinkom/article/view/1518>. Date accessed: 23 mar. 2025. doi: https://doi.org/10.37600/tekinkom.v7i2.1518.
Section
Articles