PENERAPAN METODE FORECASTING DENGAN ALGORITMA SUPPORT VECTOR MANCHINE UNTUK MEMPREDIKSI PENERIMAAN PESERTA DIDIK BARU PADA SMA ULUN NUHA
Abstract
This study aims to develop a prediction model for new student admissions at Ulun Nuha High School using the Support Vector Machine (SVM) algorithm. Ulun Nuha High School faces the challenge of fluctuating numbers of applicants every year, which affects resource allocation and strategic planning. The SVM algorithm was chosen because of its ability in classification and regression, so it can identify patterns and trends from historical student admissions data. This study uses data from 100 students with 20 data as the main sample, covering four main variables: Indonesian, Mathematics, Science and Social Studies scores, and memorization. The application of the SVM algorithm in Python obtained prediction accuracy results of 100% from 20 data samples and the results of testing the prediction data resulted in students with registration number 23021 getting a pass result and students with registration number 23022 getting a failure result. The results of the study show that the SVM model can predict the number of new students with high accuracy, close to the real results from historical data. This model provides significant benefits in planning more effective, efficient, and measurable student admissions.
References
[2] V. M. Mulia Siregar and H. Sugara, “Implementation of artificial neural network to assesment the lecturer‘s performance,” IOP Conf. Ser. Mater. Sci. Eng., vol. 420, no. 1, p. 012112, Oct. 2018, doi: 10.1088/1757-899X/420/1/012112.
[3] S. P. Tamba, M. D. Batubara, W. Purba, M. Sihombing, V. M. Mulia Siregar, and J. Banjarnahor, “Book data grouping in libraries using the k-means clustering method,” J. Phys. Conf. Ser., vol. 1230, no. 1, p. 012074, Jul. 2019, doi: 10.1088/1742-6596/1230/1/012074.
[4] S. Isnanto and S. Widodo, “Penerapan Data Mining Pada Penerimaan Mahasiswa Baru Dengan Algoritma K-Means Clustering,” J. Tek. Inf. dan Komput., vol. 4, no. 2, p. 158, 2021, doi: 10.37600/tekinkom.v4i2.367.
[5] C.Pradeepkumar and S.Loganathan, “Penerapan Metode Asosiasi Menggunakan Algoritma Apriori Pada Aplikasi Pola Belanja Konsumen ( Studi Kasus Toko Buku Gramedia Bintaro ),” Int. J. Sci. Eng. Res. (IJ0SER), vol. 3, no. 4, p. 2, 2015.
[6] Hendra Di Kesuma, D. Apriadi, H. Juliansa, and E. Etriyanti, “Implementasi Data Mining Prediksi Mahasiswa Baru Menggunakan Algoritma Regresi Linear Berganda,” J. Ilm. Bin. STMIK Bina Nusant. Jaya Lubuklinggau, vol. 4, no. 2, pp. 62–66, 2022, doi: 10.52303/jb.v4i2.74.
[7] F. M. Mahatma Raison Pribadi, “Jurnal Ilmiah Wahana Pendidikan,” J. Ilm. Wahana Pendidik. https//jurnal.unibrah.ac.id/index.php/JIWP, vol. 8, no. 1, pp. 391–402, 2022, doi: 10.5281/zenodo.6408866.
[8] T. Ariansyah, P. Purwadi, and S. Yakub, “Implementasi Data Mining Untuk Mengestimasi Kebutuhan Persediaan Roti Panggang Di Junction Cafe Dengan Menggunakan Metode Regresi Linier Berganda,” J. Cyber Tech, vol. 1, no. 1, pp. 1–8, 2022.
[9] S. Hendrian, “Algoritma Klasifikasi Data Mining Untuk Memprediksi Siswa Dalam Memperoleh Bantuan Dana Pendidikan,” Fakt. Exacta, vol. 11, no. 3, pp. 266–274, 2018, doi: 10.30998/faktorexacta.v11i3.2777.
[10] C. E. Simbolon, “Penerapan Algoritma Regresi Linier Sederhana Dalam Memprediksi Keuntungan dan Kerugian Kelapa Sawit Pt . Sri Ulina,” J. Inf. Syst. Res., vol. 2, no. 2, pp. 169–172, 2021.
[11] A. A. Putri, “Penerapan Data Mining Untuk Memprediksi Penjualan Buah Dan Sayur Menggunakan Metode K-Nearest Neighbor ( Studi Kasus : PT . Central Brastagi Utama ),” vol. 1, no. 6, pp. 354–361, 2021.
[12] D. S. O. Panggabean, E. Buulolo, and N. Silalahi, “Penerapan Data Mining Untuk Memprediksi Pemesanan Bibit Pohon Dengan Regresi Linear Berganda,” JURIKOM (Jurnal Ris. Komputer), vol. 7, no. 1, p. 56, Feb. 2020, doi: 10.30865/jurikom.v7i1.1947.
[13] E. M. Tumanggor, “Analisa Dan Implementasi Data Mining Untuk Memprediksi Jumlah Material Bangunan Menggunakan Algoritma Autoreggresive Intergrated Moving Average (ARIMA),” TIN Terap. Inform. Nusant., vol. 2, no. 6, pp. 373–377, 2021.
[14] I. T. Julianto, D. Kurniadi, M. R. Nashrulloh, and A. Mulyani, “Comparison of Data Mining Algorithm For Forecasting Bitccoin Crypto Currency Trends,” J. Tek. Inform., vol. 3, no. 2, pp. 245–248, 2022, doi: 10.20884/1.jutif.2022.3.2.194.
[15] N. R. Setyoningrum, P. J. Rahimma, S. T. Teknologi, I. Tanjungpinang, and K. Tanjungpinang, “Implementasi Algoritma Regresi Linear Dalam Sistem Prediksi Pendaftar Mahasiswa Baru Sekolah Tinggi Teknologi Indonesia Tanjungpinang,” Pros. Semin. Nas. Ilmu Sos. dan Teknol., no. 4, pp. 13–18, 2022.
[16] D. Astuti, D. Y. Hartanti, S. T. Nurhayanti, and H. Fransiska, “Clustering and Forecasting of Covid-19 Data in Indonesia,” J. Mat. Stat. dan Komputasi, vol. 18, no. 3, pp. 324–335, 2022, doi: 10.20956/j.v18i3.18882.
[17] D. Novianty, N. D. Palasara, and M. Qomaruddin, “Algoritma Regresi Linear pada Prediksi Permohonan Paten yang Terdaftar di Indonesia,” J. Sist. dan Teknol. Inf., vol. 9, no. 2, p. 81, 2021, doi: 10.26418/justin.v9i2.43664.
[18] F. Abdusyukur, “Penerapan Algoritma Support Vector Machine (Svm) Untuk Klasifikasi Pencemaran Nama Baik Di Media Sosial Twitter,” Komputa J. Ilm. Komput. dan Inform., vol. 12, no. 1, pp. 73–82, 2023, doi: 10.34010/komputa.v12i1.9418.
[19] R. Damasela, B. P. Tomasouw, and Z. A. Leleury, “Penerapan Metode Support Vector Machine (Svm) Untuk Mendeteksi Penyalahgunaan Narkoba,” Param. J. Mat. Stat. dan Ter., vol. 1, no. 2, pp. 111–122, 2022, doi: 10.30598/parameterv1i2pp111-122.
[20] I. Zulfahmi, H. Syahputra, S. I. Naibaho, M. A. Maulana, and E. P. Sinaga, “Perbandingan Algoritma Support Vector Machine (SVM) dan Decision Tree Untuk Deteksi Tingkat Depresi Mahasiswa,” Bina Insa. Ict J., vol. 10, no. 1, p. 52, 2023, doi: 10.51211/biict.v10i1.2304.
[21] I. Mahendro and D. Abimanto, “Analisa Kepuasan Mahasiswa Terhadap E-Learning Menggunakan Algoritma Support Vector Machine,” J. Sains Dan Teknol. Marit., vol. 23, no. 1, p. 97, 2022, doi: 10.33556/jstm.v23i1.333.
[22] W. Afandi, T. G. Laksana, and N. A. F. Tanjung, “Penerapan Metode Support Vector Machine Analisis Sentimen Tweet Pergantian Logo Halal di Indonesia,” J. Elektron. dan Komput., vol. 16, no. 1, pp. 45–52, 2023.