ANALISIS PERUBAHAAN PERMINTAAN TRANSAKSI UNTUK MENINGKATKAN KEPUASAAN PELANGGAN SHOPEE DENGAN ALGORITMA FUZZY C MEANS

  • Tajrin Tajrin Universitas Prima Indonesia
  • Debi Maria Hasugian Universitas Prima Indonesia
  • Olyfia Akbar Nasution Universitas Prima Indonesia

Abstract

This study uses Fuzzy C-Means to analyze Shopee customer demand and transaction success, aiming to improve customer satisfaction by understanding shopping patterns and purchase conversion rates. With the rapid growth of internet usage and e-commerce, consumer behavior analysis has become crucial for improving customer satisfaction. This study utilizes the Fuzzy C-Means algorithm to cluster data based on attributes such as location, product price, sales volume, and customer ratings. The Fuzzy C-Means algorithm allows handling ambiguous data and identifying significant patterns in transactions and customer satisfaction. The study results indicate that the algorithm successfully grouped the data into three main clusters: the first cluster has an average price of Rp 120,000, an average sales volume of 5,000 units, and an average rating of 4.8; the second cluster has an average price of Rp 140,000, an average sales volume of 3,000 units, and an average rating of 4.7; the third cluster has an average price of Rp 130,000, an average sales volume of 4,000 units, and an average rating of 4.9. This research provides valuable insights for e-commerce companies to design more effective marketing strategies and improve service quality based on the analysis of demand changes and transaction conversion effectiveness.

References

[1] Ayu Safika Dewi, Titik Inayati, and Mohamad Johan Efendi, “Pengaruh Digital Marketing, Electronic Word of Mouth, dan Lifestyle terhadap Keputusan Pembelian pada Marketplace Shopee Indonesia,” J. Teknol. dan Manaj. Ind. Terap., vol. 1, no. 3, pp. 202–209, Sep. 2022, doi: 10.55826/tmit.v1iIII.50.
[2] H. A. Simbolon and V. M. M. Siregar, “Perancangan Sistem Informasi Berbasis E-Commerce Untuk Peningkatan Penjualan Produk Jersey Olah Raga,” J. Tek. Inf. dan Komput., vol. 1, no. 2, pp. 49–54, 2018.
[3] F. Sinuraya et al., “WEB-BASED FOOD ORDERING INFORMATION SYSTEM STUDI,” pp. 7–11, 2021.
[4] E. Damanik and I. M. Siregar, “PENGEMBANGAN SISTEM CUSTOMER RELATIONSHIP MANAGEMENT BERBASIS WEB PADA PT. TERUS MEGA TARA JAKARTA,” J. Tek. Inf. dan Komput., vol. 4, no. 1, pp. 60–69, 2021, doi: 10.37600/tekinkom.v4i1.278.
[5] W. Purba, D. Ujung, T. Wahyuni, L. Sihaloho, and J. Damanik, “Perancangan Sistem Informasi Pemesanan Tiket Online Pada Kmp . Ihan Batak Berbasis,” vol. 3, no. 2, pp. 65–75, 2020.
[6] J. Simatupang and S. Sianturi, “Perancangan Sistem Informasi Pemesanan Tiket Bus Pada PO. Handoyo Berbasis Online,” J. Intra-Tech, vol. 3, no. 2, pp. 11–25, 2019.
[7] P. A. Windjaya, B. Siregar, and K. Kunci, “(Rfmts) Menggunakan Algoritma K-Medoids Clustering,” Multidiscip. Sci. J., vol. 2, no. 2, pp. 888–906, 2024.
[8] R. Simangunsong, “Market Basket Analysis Dengan Metode Algoritma Apriori Untuk Menentukan Pola Pembelian Konsumen,” J. Teknol. Pint., vol. 3, no. 1, pp. 1–16, 2023.
[9] M. Harahap, Y. Lubis, and Z. Situmorang, “Analisis Pemasaran Bisnis dengan Data Science : Segmentasi Kepribadian Pelanggan berdasarkan Algoritma K-Means Clustering,” Data Sci. Indones., vol. 1, no. 2, pp. 76–88, 2022, doi: 10.47709/dsi.v1i2.1348.
[10] B. Satrio, “Analisis Perbandingan Metode Pemilihan Atribusi Untuk Memprediksi Loyalitas Pelanggan,” J. Portal Data, vol. 2, no. 8, pp. 1–12, 2022.
[11] A. A. SHELEMO, “No Titleیلیب,” Nucl. Phys., vol. 13, no. 1, pp. 104–116, 2023.
[12] A. Rizal, D. C. R. Novitasari, and M. Hafiyusholeh, “Pengelompokan Karyawan Berdasarkan Kesalehan Menggunakan Perbandingan Fuzzy C-Means, K-Means, dan Probabilistic Distance Clustering,” J. Fourier, vol. 11, no. 2, pp. 69–77, 2022, doi: 10.14421/fourier.2022.112.69-77.
[13] A.-Y. Al-Yasir, M. Afdal, Z. Zarnelly, and A. Marsal, “Analisis Loyalitas Pelanggan Business To Business Berdasarkan Model RFM Menggunakan Algoritma Fuzzy C-Means,” MALCOM Indones. J. Mach. Learn. Comput. Sci., vol. 4, no. 1, pp. 359–365, 2024, doi: 10.57152/malcom.v4i1.1163.
[14] M. D. Chandra, E. Irawan, I. S. Saragih, A. P. Windarto, and D. Suhendro, “Penerapan Algoritma K-Means dalam Mengelompokkan Balita yang Mengalami Gizi Buruk Menurut Provinsi,” BIOS J. Teknol. Inf. dan Rekayasa Komput., vol. 2, no. 1, pp. 30–38, 2021, doi: 10.37148/bios.v2i1.19.
[15] Mahmudi, R. Goejantoro, and F. D. T. Amijaya, “Comparison of C-Means and Fuzzy C-Means Methods in the Districts/Cities on the Island of Kalimantan Based on the 2019 HDI Indicators,” J. EKSPONENSIAL, vol. 12, no. 2, pp. 193–1999, 2021.
[16] I. Purnama Sari and I. Hanif Batubara, “Cluster analysis using k-means algorithm and fuzzy C-means clustering for grouping students’ abilities in online learning process,” J. Comput. Sci. Inf. Technol. Telecommun. Eng., vol. 2, no. 1, pp. 139–144, 2021, doi: 10.30596/jcositte.v2i1.6504.
[17] Y. Elda, S. Defit, Y. Yunus, and R. Syaljumairi, “Klasterisasi Penempatan Siswa yang Optimal untuk Meningkatkan Nilai Rata-Rata Kelas Menggunakan K-Means,” J. Inf. dan Teknol., pp. 103–108, Sep. 2021, doi: 10.37034/jidt.v3i3.130.
[18] A. C. Putra and K. D. Hartomo, “Optimalisasi Penyaluran Bantuan Pemerintah Untuk UMKM Menggunakan Metode Fuzzy C-Means,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 1, no. 10, pp. 474–482, 2021.
[19] R. Hafsari and G. W. Nurcahyo, “Penerapan Fuzzy C-Means Pada Teknologi Adopsi Usaha Mikro Kecil dan Menengah,” J. KomtekInfo, vol. 8, pp. 183–188, 2021, doi: 10.35134/komtekinfo.v8i3.165.
[20] Faza Adhzima, Yandra Arkeman, and Irman Hermadi, “The Clustering Rice Plant Diseases Using Fuzzy C-Means and Genetic Algorithm,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 6, no. 2, pp. 240–245, Apr. 2022, doi: 10.29207/resti.v6i2.3912.
[21] L. Marlia, P. Ngatmini, P. Esteriani Tobing, and C. Author, “Segmentation Analysis of Mall Visitors Using K-means and Fuzzy C-Means Algorithm Analisis Segmentasi Pengunjung Mall Menggunakan Algoritma K-means dan Fuzzy C-means,” SENTIMAS Semin. Nas. Penelit. dan Pengabdi. Masy. , pp. 240–247, 2023.
[22] U. Wachidatul Latifah and A. History, “http://ejournal.radenintan.ac.id/index.php/desimal/index K-means and fuzzy c-means algorithm comparison on regency/city grouping in Central Java Province ARTICLE INFO ABSTRACT,” Desimal J. Mat., vol. 5, no. 2, pp. 155–168, 2022, doi: 10.24042/djm.
[23] J. Fredricka, L. Elfianty, and J. Wahyudi, “Implementasi Algortima C-Means dan Algoritma Mixture dalam Pengclusteran Data Mahasiswa Drop Out,” JUKI J. Komput. dan Inform., vol. 4, no. 2, pp. 135–142, 2022.
[24] Belia Mailien, A. Salma, Syafriandi, and D. Fitria, “Comparison K-Means and Fuzzy C-Means Methods to Grouping Human Development Index Indicators in Indonesia,” UNP J. Stat. Data Sci., vol. 1, no. 1, pp. 23–30, 2023, doi: 10.24036/ujsds/vol1-iss1/4.
Published
2024-12-31
How to Cite
TAJRIN, Tajrin; HASUGIAN, Debi Maria; NASUTION, Olyfia Akbar. ANALISIS PERUBAHAAN PERMINTAAN TRANSAKSI UNTUK MENINGKATKAN KEPUASAAN PELANGGAN SHOPEE DENGAN ALGORITMA FUZZY C MEANS. Jurnal Tekinkom (Teknik Informasi dan Komputer), [S.l.], v. 7, n. 2, p. 802-811, dec. 2024. ISSN 2621-3079. Available at: <https://jurnal.murnisadar.ac.id/index.php/Tekinkom/article/view/1530>. Date accessed: 07 feb. 2025. doi: https://doi.org/10.37600/tekinkom.v7i2.1530.
Section
Articles