PENERAPAN METODE ALGORITMA C4.5 DAN NAIVE BAYES UNTUK PREDIKSI PENYAKIT JANTUNG

  • Putri Anasia Sihotang Universitas Prima Indonesia
  • Delima Sitanggang Universitas Prima Indonesia

Abstract

This study aims to compare the C4.5 Decision Tree and Naive Bayes algorithms in predicting heart disease to determine the most efficient algorithm. Heart disease is one of the leading causes of global mortality, including in Indonesia, due to vascular damage that disrupts the optimal functioning of the heart. The dataset used comes from the UCI Machine Learning Repository and the Kaggle website's "Heart Failure Prediction," totaling 918 records with 11 clinical attributes and 1 label. Data processing was conducted using Google Colab with the Python programming language. The results show that the C4.5 algorithm achieved an accuracy of 95.18% after feature selection using Particle Swarm Optimization (PSO), while without feature selection, it achieved an accuracy of 81%, precision of 83%, recall of 74%, F1-score of 78%, and an AUC value of 81%. Meanwhile, the Naive Bayes algorithm achieved a maximum accuracy of 90.87% without feature selection and performed best with an accuracy of 84%, precision of 83%, recall of 80%, F1-score of 81%, and an AUC value of 94%. These findings indicate that the Naive Bayes algorithm outperformed the C4.5 algorithm in several evaluation parameters.

References

[1] A. S. Prabowo and F. I. Kurniadi, “Analisis Perbandingan Kinerja Algoritma Klasifikasi dalam Mendeteksi Penyakit Jantung,” J. SISKOM-KB (Sistem Komput. dan Kecerdasan Buatan), vol. 7, no. 1, pp. 56–61, 2023, doi: 10.47970/siskom-kb.v7i1.468.
[2] R. Anggriawan and H. W. Nugroho, “Komparasi Algoritma C4.5 dan Naive Bayes Dalam Prediksi Penderita Penyakit Gagal Jantung,” J. SIMADA (Sistem Inf. dan Manaj. Basis Data), vol. 6, no. 1, pp. 82–91, 2023, doi: 10.30873/simada.v6i1.3425.
[3] P. Valentino and S. Narulita, “Performansi Algoritma Decision Tree (C4.5) untuk Prediksi Penyakit Jantung,” J. Cakrawala Inf., vol. 3, no. 2, pp. 18–24, 2023.
[4] J. Triani, Y. Pratama, and E. Yanti, “Jurnal Informatika Dan Rekayasa Komputer (JAKAKOM) Komparasi Dalam Prediksi Gagal Jantung Dengan Menggunakan Metode C4.5 dan Naïve Bayes,” vol. 3, no. 1, pp. 2808–5469, 2023.
[5] F. Fredilio, J. Rahmad, S. H. Sinurat, D. R. H. Sitompul, D. J. Ziegel, and E. Indra, “Perbandingan Algoritma K-Nearest Neighbors (K-NN) dan Random forest terhadap Penyakit Gagal Jantung,” J. Teknol. Inform. dan Komput., vol. 9, no. 1, pp. 471–486, 2023, doi: 10.37012/jtik.v9i1.1432.
[6] A. Sepharni, I. E. Hendrawan, and C. Rozikin, “Klasifikasi Penyakit Jantung dengan Menggunakan Algoritma C4.5,” STRING (Satuan Tulisan Ris. dan Inov. Teknol., vol. 7, no. 2, p. 117, 2022, doi: 10.30998/string.v7i2.12012.
[7] F. Bukhari, S.- Nurdiati, M. K. Najib, and R. N. Amalia, “Deteksi Penyakit Jantung Menggunakan Metode Klasifikasi Decision Tree dan Regresi Logistik,” Sains, Apl. Komputasi dan Teknol. Inf., vol. 5, no. 1, p. 41, 2024, doi: 10.30872/jsakti.v5i1.10780.
[8] D. Larassati, A. Zaidiah, and S. Afrizal, “Sistem Prediksi Penyakit Jantung Koroner Menggunakan Metode Naive Bayes,” JIPI (Jurnal Ilm. Penelit. dan Pembelajaran Inform., vol. 7, no. 2, pp. 533–546, 2022, doi: 10.29100/jipi.v7i2.2842.
[9] H. Hidayat, A. Sunyoto, and H. Al Fatta, “Klasifikasi Penyakit Jantung Menggunakan Random Forest Clasifier,” J. SISKOM-KB (Sistem Komput. dan Kecerdasan Buatan), vol. 7, no. 1, pp. 31–40, 2023, doi: 10.47970/siskom-kb.v7i1.464.
[10] H. Firda, R. Athiyah, and M. Ihsan Jambak, “Perbandingan Algoritma Klasifikasi Data Mining Model C4.5 Dan Naive Bayes Untuk Prediksi Keganasan Kanker Payudara,” vol. 14, no. 3, pp. 150–233, 2024.
[11] E. Jannah, V. Sihombing, and M. Masrizal, “Penerapan Data Mining Klasifikasi Kepuasan Pelanggan Transportasi Online Menggunakan Algoritma C4.5,” MEANS (Media Inf. Anal. dan Sist., vol. 8, no. 1, pp. 1–7, 2023, doi: 10.54367/means.v8i1.2569.
[12] V. Sinaga, V. Sihombing, and I. Rasyid Munthe, “Pengembangan Model Pohon Keputusan C4.5 untuk Memprediksi Keberhasilan Peluncuran Produk Baru,” J. Ilmu Komput. dan Sist. Inf., vol. 7, no. 1, pp. 87–90, 2024, doi: 10.55338/jikomsi.v7i1.2719.
[13] E. Esterlin, V. Sihombing, and A. Putra Juledi, “Deteksi Serangan dalam Jaringan Komputer dengan Algoritma Pohon Keputusan C4.5,” J. Ilmu Komput. dan Sist. Inf., vol. 7, no. 1, pp. 323–327, 2024, doi: 10.55338/jikomsi.v7i1.3087.
[14] S. B. Sugara, Bayu; Dedi Adidarma, “Perbandingan Akurasi Algoritma C4.5 dan Naïve Bayes untuk Deteksi Dini Gangguan Autisme pada Anak,” J. IKRA-ITH Inform., vol. 3, no. 1, pp. 119–128, 2019.
[15] Rian Pratama, B. Huda, E. Novalia, and H. Kabir, “Perbandingan Algoritma C4.5 dan Naïve Bayes dalam Menentukan Persediaan Stok,” Metik J., vol. 6, no. 2, pp. 115–122, 2022, doi: 10.47002/metik.v6i2.379.
[16] V. M. M. Siregar, “Perancangan Sistem Pendukung Keputusan Penentuan Jurusan Siswa/i SMA Swasta Binaguna Tanah Jawa Dengan Metode Naive Bayes,” in Prosiding SenNasMUDI 2017 ISBN 978-602-50396-1-4, 2017, pp. 66–75.
[17] V. M. M. Siregar, “Sistem Pendukung Keputusan Penentuan Insentif Bulanan Pegawai Dengan Menggunakan Metode Naïve Bayes,” SISTEMASI, vol. 7, no. 2, pp. 87–94, 2018.
[18] Khodijah and Sriyanto, “Perbandingan Kinerja Algoritma C4.5. Naive Bayes Dan Random Forest Dalam Prediksi Penyakit Jantung,” J. Tek., vol. 17, no. 2, pp. 419–426, 2023.
[19] N. M. Putry, “Komparasi Algoritma Knn Dan Naïve Bayes Untuk Klasifikasi Diagnosis Penyakit Diabetes Mellitus,” EVOLUSI J. Sains dan Manaj., vol. 10, no. 1, 2022, doi: 10.31294/evolusi.v10i1.12514.
[20] Fedesoriano, “Heart Failure Prediction,” https://www.kaggle.com/fedesoriano/heart-failure-prediction., 2021.
Published
2024-12-31
How to Cite
SIHOTANG, Putri Anasia; SITANGGANG, Delima. PENERAPAN METODE ALGORITMA C4.5 DAN NAIVE BAYES UNTUK PREDIKSI PENYAKIT JANTUNG. Jurnal Tekinkom (Teknik Informasi dan Komputer), [S.l.], v. 7, n. 2, p. 899-908, dec. 2024. ISSN 2621-3079. Available at: <https://jurnal.murnisadar.ac.id/index.php/Tekinkom/article/view/1535>. Date accessed: 07 feb. 2025. doi: https://doi.org/10.37600/tekinkom.v7i2.1535.
Section
Articles