MODEL KLASTERISASI DATA PENDUDUK MENGGUNAKAN ALGORITMA K-MEANS UNTUK MENGETAHUI PRIORITAS PENERIMA BANTUAN SOSIAL DI DESA BAPINANG HULU
Abstract
Central Kalimantan has a poor population of 140.04 thousand people with a poverty percentage of 5.16%. The poverty severity rate reaches a value of 0.15, with a poverty line of 506,982 IDR/Capita/Month. Bapinang Hulu Village in Central Kalimantan has around ±428,895 people in 2021. This large population makes it difficult to determine the priority of social assistance recipients, coupled with limited human resources in the village office. Data collection on social assistance recipients is still carried out based on the proposal of the RT head without proper validation, often causing social jealousy. This study aims to optimize the distribution of social assistance in Bapinang Hulu Village using the K-Means algorithm for grouping population data. The dataset consists of 246 records with 14 attributes that reflect the conditions of the head of the family in the village. The K-Means algorithm was chosen because of its ability to group data based on attribute similarities. Testing was carried out 12 times with variations in the K value to determine the optimal clustering. The results show that in the 12th test with a value of K = 13, the lowest Davies-Bouldin Index (DBI) value of 0.072 was obtained. This shows that clustering at K = 13 is optimal in terms of separation between clusters and density within clusters. Clustering helps identify community groups that need social assistance the most, provides more accurate recommendations for the priority of social assistance recipients, so that the distribution of assistance is more targeted and effective.
References
[2] W. Wu, W. Wang, X. Jia, and X. Feng, “Transformer Autoencoder for K-means Efficient clustering,” Eng. Appl. Artif. Intell., vol. 133, no. F, p. 108612, Jul. 2024, doi: 10.1016/j.engappai.2024.108612.
[3] A. Ramadhan, K. Prawita, M. A. Izzudin, and G. Amandha, “Analisis strategi dan klasterisasi ketahanan pangan nasional dalam menghadapi pandemi covid-19,” Teknol. Pangan Media Inf. dan Komun. Ilm. Teknol. Pertan., vol. 12, no. 1, 2021, doi: 10.35891/tp.v12i1.2179.
[4] N. Nurahman and D. Dwi Aulia, “Algoritma K-Means Untuk Melihat Penularan Tertinggi Virus Covid-19 Diseluruh Provinsi Indonesia,” 2021. doi: https://doi.org/10.36050/betrik.v12i2.331.
[5] W. Zhang and Z. Wu, “E-commerce recommender system based on improved K-means commodity information management model,” Heliyon, vol. 10, no. 9, pp. 1–11, May 2024, doi: 10.1016/j.heliyon.2024.e29045.
[6] A. N. Ulfah, “Analisis Kinerja Algoritma Fuzzy C-Means dan K-Means pada Data Kemiskinann,” Jatisi, vol. 1, no. 2, 2018.
[7] R. Granillo-Macías, “Logistics optimization through a social approach for food distribution,” Socioecon. Plann. Sci., vol. 76, 2021, doi: 10.1016/j.seps.2020.100972.
[8] Q. Zhou and B. Sun, “Adaptive K-means clustering based under-sampling methods to solve the class imbalance problem,” Data Inf. Manag., 2024, doi: 10.1016/j.dim.2023.100064.
[9] N. Nurahman and N. A. Tanjung, “Clustering Village Development in West Java Province on the Condition of Developing Village Strata Using K-Means Algorithm,” J. Penelit. Pendidik. IPA, vol. 9, no. SpecialIssue, 2023, doi: 10.29303/jppipa.v9ispecialissue.5937.
[10] N. Nurahman and D. D. Aulia, “Klasterisasi Pendidikan Masyarakat Untuk Mengetahui Daerah Dengan Pendidikan Terendah Menggunakan Algoritma K-Means,” J. Inform. dan Rekayasa Perangkat Lunak, vol. 5, no. 1, 2023, doi: 10.36499/jinrpl.v5i1.7510.
[11] W. Warisa and N. Nurahman, “Perbandingan Performa Cluster Model Algoritma K-Means Dalam Mengelompokkan Penerima Bantuan Program Keluarga Harapan,” J. Sist. Info. Bisnis, vol. 13, no. 1, 2023, doi: 10.21456/vol13iss1pp20-28.
[12] N. Nurahman and J. Susanto, “Klasterisasi Data Penerima Bantuan Langsung Tunai Menggunakan Algoritma K-Means,” JURIKOM (Jurnal Ris. Komputer), vol. 10, no. 2, 2023, doi: 10.30865/jurikom.v10i2.5807.
[13] W. Gong, L. Pang, J. Wang, M. Xia, and Y. Zhang, “A social-aware K means clustering algorithm for D2D multicast communication under SDN architecture,” AEU - Int. J. Electron. Commun., vol. 132, 2021, doi: 10.1016/j.aeue.2021.153610.
[14] V. D. Ferezagia, “Analisis Tingkat Kemiskinan di Indonesia,” J. Sos. Hum. Terap., vol. 1, no. 1, pp. 1–6, Dec. 2018, doi: 10.7454/jsht.v1i1.6.
[15] D. Ardiansyah, W. Suharso, and G. I. Marthasari, “Analisis Penerima Bantuan Sosial menggunakan Bayesian Belief Network,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 2, no. 2, 2018, doi: 10.29207/resti.v2i2.447.
[16] S. R. Nasution, Mesran, S. Aripin, and M. Sianturi, “Sistem Pendukung Keputusan Prioritas Lokasi Perbaikan Jalan Dengan Metode Preference Selection Index (PSI) (Studi Kasus : Dinas Bina Marga),” Pelita Inform. Inf. dan Inform., vol. 10, no. 1, 2021.
[17] L. Maulida, “Penerapan Data Mining Dalam Mengelompokkankunjungan Wisatawan ke Objek Wisata Unggulan di Prov. DKI Jakarta Dengan K-Means,” J. Inform. Sunan Kalijaga), vol. 2, no. 3, pp. 167–174, 2018.
[18] M. Ahmed, R. Seraj, and S. M. S. Islam, “The k-means algorithm: A comprehensive survey and performance evaluation,” Electronics (Switzerland), vol. 9, no. 8. MDPI AG, pp. 1–12, Aug. 01, 2020. doi: 10.3390/electronics9081295.
[19] S. Yunita and V. N. Alaeyda, “Penerapan Algoritma C4.5 Untuk Prediksi Penerimaan Beasiswa di SD 4 Pelangsian,” ICIT J., vol. 8, no. 2, pp. 181–193, Aug. 2022, doi: 10.33050/icit.v8i2.2408.
[20] S. Yunita and N. Nurahman, “Metode Klasifikasi Data Mining Algoritma C4.5 dan PART Untuk Prediksi Waktu Kelulusan Mahasiswa di Universitas Darwan Ali,” J. Inf. Interaktif, vol. 7, no. 1, pp. 1–7, 22AD.
[21] E. Wahyu Sholeha, S. Yunita, R. Hammad, V. Cahya Hardita, and K. Kaharuddin, “Analisis Sentimen Pada Agen Perjalanan Online Menggunakan Naïve Bayes dan K-Nearest Neighbor,” JTIM J. Teknol. Inf. dan Multimed., vol. 3, no. 4, pp. 203–208, Feb. 2022, doi: doi.org/10.35746/jtim.v3i4.178.