PENERAPAN ALGORITMA SUPPORT VECTOR MACHINES DAN RANDOM FOREST DALAM ANALISIS SENTIMEN ULASAN APLIKASI IDENTITAS KEPENDUDUKAN DIGITAL
Abstract
The Digital Population Identity (IKD) application, developed by the Directorate General of Population and Civil Registration, aims to streamline access to digital documents and reduce reliance on printed KTPs. Despite its benefits, user reviews from the Play Store highlight significant issues. This research aims to analyze user sentiment towards the IKD application using Support Vector Machines (SVM) and Random Forest algorithms. The study employed these models to classify sentiment in user reviews and used word cloud analysis to further understand the feedback. Results indicate that both the Random Forest and SVM models struggled with accuracy, achieving only 19.25% and 18% respectively. The word cloud analysis revealed a high prevalence of negative reviews, reflecting the app's low rating. These findings suggest that the current sentiment analysis methods are insufficient for capturing the public's opinion on the IKD application, providing crucial insights for improving future digital population identity management strategies.
References
[2] S. Ernawati and S. Rahayu, “Analisa Usability Pada Aplikasi Identitas Kependudukan Digital Menggunakan Metode Usability Testing,” BIOS J. Teknol. Inf. dan Rekayasa Komput., vol. 5, no. 1, pp. 12–19, 2023, doi: 10.37148/bios.v5i1.87.
[3] I. B. Permadi and A. Rokhman, “Implementasi Identitas Kependudukan Digital Dalam Upaya Pengamanan Data pribadi,” JOPPAS J. Public Policy Adm. Silampari, vol. 4, no. 2, pp. 80–88, 2023, doi: 10.31539/joppas.v4i2.6199.
[4] V. Salsa Bella and D. Widodo, “Implementasi Aplikasi Identitas Kependudukan Digital (IKD) Dalam Menunjang Pelayanan Publik Masyarakat Di Kecamatan Tambaksari,” Saraq Opat J. Adm. Publik, vol. 6, no. 1, pp. 14–31, 2023, doi: 10.55542/saraqopat.v6i1.833.
[5] N. Wahyuningsih and H. Hendry, “Perbandingan Metode Klasifikasi Dalam Analisis Sentimen Masyarakat Terhadap Identitas Kependudukan Digital (Ikd),” JIPI (Jurnal Ilm. Penelit. dan Pembelajaran Inform., vol. 8, no. 4, pp. 1218–1227, 2023, doi: 10.29100/jipi.v8i4.4155.
[6] C. Yoon, “Inovasi Pelayanan E-Ktp Berbasis Aplikasi Identitas Kependudukan Digital Di Dinas Kependudukan Dan Pencatatan Sipil Kota Tangerang,” Pap. Knowl. . Towar. a Media Hist. Doc., vol. 5, no. 2, pp. 328–338, 2014.
[7] I. Nurdiana and K. Ayumi, “Implementasi Aplikasi Identitas Kependudukan Digital (IKD) Di Disdukcapil Kota Tanjungpinang Implementation Of The Digital Population Identity (IKD) Application At Disdukcapil Tanjungpinang City,” J. Pengabdi. dan Solidar. Masy., vol. 1, no. 2, pp. 50–58, 2024, [Online]. Available: https://doi.org/10.62383/harmoni.v1i2.141
[8] E. Andrian and A. Rahman Isnain, “Analisis Sentimen Masyarakat Terhadap Tiktok Shop di Twitter Menggunakan Metode Naive Bayes Classifier,” J. Media Inform. Budidarma, vol. 8, no. 2, pp. 788–796, 2024, doi: 10.30865/mib.v8i2.7530.
[9] E. R. Lidinillah, T. Rohana, and A. R. Juwita, “Analisis sentimen twitter terhadap steam menggunakan algoritma logistic regression dan support vector machine,” TEKNOSAINS J. Sains, Teknol. dan Inform., vol. 10, no. 2, pp. 154–164, 2023, doi: 10.37373/tekno.v10i2.440.
[10] F. A. Larasati, D. E. Ratnawati, and B. T. Hanggara, “Analisis Sentimen Ulasan Aplikasi Dana dengan Metode Random Forest,” … Teknol. Inf. dan …, vol. 6, no. 9, pp. 4305–4313, 2022, [Online]. Available: http://j-ptiik.ub.ac.id
[11] M. R. Adrian, M. P. Putra, M. H. Rafialdy, and N. A. Rakhmawati, “Perbandingan Metode Klasifikasi Random Forest dan SVM Pada Analisis Sentimen PSBB,” J. Inform. Upgris, vol. 7, no. 1, pp. 36–40, 2021, doi: 10.26877/jiu.v7i1.7099.
[12] A. N. Syafia, M. F. Hidayattullah, and W. Suteddy, “Studi Komparasi Algoritma SVM Dan Random Forest Pada Analisis Sentimen Komentar Youtube BTS,” vol. 8, no. 3, pp. 207–212, 2023.
[13] R. R. S. Putri Kumala Sari, “Vol 7 No 1 , Februari 2024 KOMPARASI ALGORITMA SUPPORT VECTOR MACHINE DAN RANDOM,” vol. 7, no. 1, pp. 31–39, 2024.
[14] R. A. S and Y. Yamasari, “Eksplorasi Fitur Seleksi pada SVM dan Random Forest dalam Analisis Sentimen Aplikasi GoPay,” vol. 06, pp. 55–65, 2024.
[15] A. Ulfah and I. Najiah, “Implementasi Web Scraping Pada Situs Jurnal Sinta Menggunakan Framework Selenium Webdriver Python,” JIKA (Jurnal Inform., vol. 7, no. 1, p. 29, 2023, doi: 10.31000/jika.v7i1.7037.
[16] A. Syahril, Y. Cahyana, D. S. Kusumaningrum, and T. Rohana, “Perbandingan Metode Decision Tree Dan K-Nearest Neighbor Terhadap Ulasan Pengguna Aplikasi Mypertamina Menggunakan Confusion Matrix,” vol. 5, no. 4, pp. 1085–1094, 2024, doi: 10.47065/josh.v5i4.5639.
[17] S. Ayu Anjani and A. Fauzan, “Implementasi n-Gram dalam Analisis Sentimen Masyarakat DIY terhadap PSBB Jawa-Bali Jilid II Menggunakan Naive Bayes Classifier,” Stat. J. Theor. Stat. Its Appl., vol. 21, no. 2, pp. 73–83, 2021, doi: 10.29313/statistika.v21i2.294.
[18] R. W. Utami, A. Jazuli, and T. Khotimah, “Analisis Sentimen Terhadap Xiaomi Indonesia Menggunakan Metode Naïve Bayes,” Indones. J. Technol. Informatics Sci., vol. 3, no. 1, pp. 21–30, 2021, doi: 10.24176/ijtis.v3i1.7514.
[19] F. Sodik and I. Kharisudin, “Analisis Sentimen dengan SVM , NAIVE BAYES dan KNN untuk Studi Tanggapan Masyarakat Indonesia Terhadap Pandemi Covid-19 pada Media Sosial Twitter,” Prisma, vol. 4, pp. 628–634, 2021.
[20] E. Fitri, “Analisis Sentimen Terhadap Aplikasi Ruangguru Menggunakan Algoritma Naive Bayes, Random Forest Dan Support Vector Machine,” J. Transform., vol. 18, no. 1, p. 71, 2020, doi: 10.26623/transformatika.v18i1.2317.
[21] Dikan Ismafillah, Tatang Rohana, and Yana Cahyana, “Analisis algoritma pohon keputusan untuk memprediksi penyakit diabetes menggunakan oversampling smote,” INFOTECH J. Inform. Teknol., vol. 4, no. 1, pp. 27–36, 2023, doi: 10.37373/infotech.v4i1.452.