IMPLEMENTASI METODE RANDOM FOREST UNTUK KLASIFIKASI PENJUALAN PRODUK SABUN PALING LARIS

  • Galuh Eka Pratiwi Universitas Kristen Satya Wacana
  • Adi Nugroho Universitas Kristen Satya Wacana

Abstract

This research aims to analyze soap product sales data in a supermarket to understand sales patterns and categorize products based on their sales levels. Considering the multitude of soap products, the supermarket finds it difficult to conduct research on the best-selling soap products. The data used includes 4,694 soap product sales data from January 2022 to December 2023, with variables such as type, brand, price, and quantity sold. In this study, the Random Forest method is used to classify soap products into four categories: not popular, less popular, popular, and most popular. The process of data analysis and processing was carried out using Google Colaboratory with the Python programming language. Based on the evaluation results, the produced model has an accuracy of 94.6%, which indicates that this method is effective in classifying products based on sales levels. The results of this research are expected to help supermarkets optimize inventory management and design more targeted marketing strategies to increase profits. With this classification, supermarkets can focus more on products that have the potential to contribute greater profits.

References

[1] Rasiban and Maruli Samuel Praja Raymond, “Penerapan Data Mining Untuk Memprediksi Penerimaan Peserta Didik Baru,” INNOVATIVE: Journal Of Social Science Research, vol. 3, pp. 10065–10079, 2023, Accessed: Nov. 09, 2024. [Online]. Available: https://j-innovative.org/index.php/Innovative

[2] Oon Wira Yuda, Darmawan Tuti, Lim Sheih Yee, and Susanti, “Penerapan Penerapan Data Mining Untuk Klasifikasi Kelulusan Mahasiswa Tepat Waktu Menggunakan Metode Random Forest,” SATIN - Sains dan Teknologi Informasi, vol. 8, no. 2, pp. 122–131, Dec. 2022, doi: 10.33372/stn.v8i2.885.

[3] I. Adriansyah, M. D. Mahendra, E. Rasywir, and Y. Pratama, “Perbandingan Metode Random Forest Classifier dan SVM Pada Klasifikasi Kemampuan Level Beradaptasi Pembelajaran Jarak Jauh Siswa,” Bulletin of Informatics and Data Science, vol. 1, no. 2, 2022, [Online]. Available: https://ejurnal.pdsi.or.id/index.php/bids/index

[4] N. L. P. C. Savitri, R. A. Rahman, R. Venyutzky, and N. A. Rakhmawati, “Analisis Klasifikasi Sentimen Terhadap Sekolah Daring pada Twitter Menggunakan Supervised Machine Learning,” Jurnal Teknik Informatika dan Sistem Informasi, vol. 7, no. 1, Apr. 2021, doi: 10.28932/jutisi.v7i1.3216.

[5] Gde Agung Brahmana Suryanegara, Adiwijaya, and Mahendra Dwifebri Purbolaksono, “Peningkatan Hasil Klasifikasi pada Algoritma Random Forest untuk Deteksi Pasien Penderita Diabetes Menggunakan Metode Normalisasi,” Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), vol. 5, no. 1, pp. 114–122, Feb. 2021, doi: 10.29207/resti.v5i1.2880.
[6] R. Nurhidayat and K. E. Dewi, “PENERAPAN ALGORITMA K-NEAREST NEIGHBOR DAN FITUR EKSTRAKSI N-GRAM DALAM ANALISIS SENTIMEN BERBASIS ASPEK,” KOMPUTA, vol. 12, no. 1, 2023, [Online]. Available: https://www.kaggle.com/datasets/hafidahmusthaanah/skincare-review?select=00.+Review.csv.

[7] Suci Amaliah, M. Nusrang, and A. Aswi, “Penerapan Metode Random Forest Untuk Klasifikasi Varian Minuman Kopi di Kedai Kopi Konijiwa Bantaeng,” VARIANSI: Journal of Statistics and Its application on Teaching and Research, vol. 4, no. 3, pp. 121–127, Dec. 2022, doi: 10.35580/variansiunm31.

[8] R. Rindiyani, A. Primadewi, M. Maimunah, and A. H. Purwantini, “Klasifikasi Penjualan berdasarkan Platform pada UMKM Omah Branded Menggunakan Random Forest,” JURIKOM (Jurnal Riset Komputer), vol. 9, no. 5, p. 1520, Oct. 2022, doi: 10.30865/jurikom.v9i5.4949.

[9] E. S. Patasik and S. Yulianto, “CLASSIFICATION OF REGIONAL LANGUAGES USING METHODS GRADIENT BOOTS AND RANDOM FOREST,” Jurnal Teknik Informatika (Jutif), vol. 4, no. 5, pp. 1249–1255, Nov. 2023, doi: 10.52436/1.jutif.2023.4.5.1459.

[10] C. P. Yanti, N. W. Eva Agustini, N. L. W. Sri Rahayu Ginantra, and D. A. Putri Wulandari, “Perbandingan Metode K-NN Dan Metode Random Forest Untuk Analisis Sentimen pada Tweet Isu Minyak Goreng di Indonesia,” JURNAL MEDIA INFORMATIKA BUDIDARMA, vol. 7, no. 2, p. 756, Apr. 2023, doi: 10.30865/mib.v7i2.5900.

[11] M. Ferdyandi, N. Y. Setiawan, and F. Abdurrachman Bachtiar, “Prediksi Potensi Penjualan Makanan Beku berdasarkan Ulasan Pengguna Shopee menggunakan Metode Decision Tree Algoritma C4.5 dan Random Forest (Studi Kasus Dapur Lilis),” Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, vol. 6, no. 2, pp. 588–596, 2022, [Online]. Available: http://j-ptiik.ub.ac.id

[12] Q. Iman and A. W. Wijayanto, “Klasifikasi Rumah Tangga Penerima Beras Miskin (Raskin)/Beras Sejahtera (Rastra) di Provinsi Jawa Barat Tahun 2017 dengan Metode Random Forest dan Support Vector Machine,” Jurnal Sistem dan Teknologi Informasi (Justin), vol. 9, no. 2, p. 178, Apr. 2021, doi: 10.26418/justin.v9i2.44137.

[13] K. Kredit Kendaraan Bermotor Amrin, E. Irfiani, and F. Teknik dan Informatika, “Analisis Algoritma Iterative Dichotomiser 3 (ID3) untuk Penilaian,” IMTechno: Journal of Industrial Management and Technology, vol. 5, no. 2, 2024, [Online]. Available: http://jurnal.bsi.ac.id/index.php/imtechno

[14] A. Nugroho and D. Harini, “Teknik Random Forest untuk Meningkatan Akurasi Data Tidak Seimbang,” JSITIK, vol. 2, no. 2, 2024, doi: 10.53624/jsitik.v2i2.XX.

[15] N. Widjiyati, “Implementasi Algoritme Random Forest Pada Klasifikasi Dataset Credit Approval,” Jurnal Janitra Informatika dan Sistem Informasi, vol. 1, no. 1, pp. 1–7, Apr. 2021, doi: 10.25008/janitra.v1i1.118.

[16] J. Khatib Sulaiman, M. Dzakwan Ar Rosyid, and I. Artikel Abstrak, “Klasifikasi Tingkat Risiko Kesehatan Ibu Hamil Menggunakan Algoritma Support Vectore Machine,” Indonesian Journal of Computer Science Attribution, vol. 12, no. 5, pp. 2023–2798, 2023, Accessed: Nov. 09, 2024. [Online]. Available: ijcs.stmikindonesia.ac.id

[17] Mochammad Edris Effendi, Imam Yuadi, and Ira Puspitasari, “Prediksi Guru Kemungkinan Tetap Bekerja di Sekolah Al Uswah Surabaya Menggunakan Machine Learning,” Jurnal Informasi dan Teknologi, vol. 5, no. 1, 2023, Accessed: Nov. 08, 2024. [Online]. Available: https://jidt.org/jidt

[18] R. Maria et al., “Analisis Sentimen Persepsi Masyarakat Terhadap Penggunaan Aplikasi My Pertamina Pada Media Sosial Twitter Menggunakan Metode Naïve Bayes Classifier,” Jurnal Komputer Antartika, vol. 1, p. 2023, 2023, [Online]. Available: https://ejournal.mediaantartika.id/index.php/jka

[19] M. Luthfi Bangun Permadi and R. Gumilang Sekolah Tinggi Teknologi Bandung, “PENERAPAN ALGORITMA CNN (CONVOLUTIONAL NEURAL NETWORK) UNTUK DETEKSI DAN KLASIFIKASI TARGET MILITER BERDASARKAN CITRA SATELIT,” SOSTECH, Feb. 2024.

[20] S. Clara et al., “Implementasi Seleksi Fitur Pada Algoritma Klasifikasi Machine Learning Untuk Prediksi Penghasilan Pada Adult Income Dataset,” Seminar Nasional Mahasiswa Ilmu Komputer dan Aplikasinya (SENAMIKA) Jakarta-Indonesia, 2021
Published
2024-12-31
How to Cite
PRATIWI, Galuh Eka; NUGROHO, Adi. IMPLEMENTASI METODE RANDOM FOREST UNTUK KLASIFIKASI PENJUALAN PRODUK SABUN PALING LARIS. Jurnal Tekinkom (Teknik Informasi dan Komputer), [S.l.], v. 7, n. 2, dec. 2024. ISSN 2621-3079. Available at: <https://jurnal.murnisadar.ac.id/index.php/Tekinkom/article/view/1610>. Date accessed: 17 jan. 2025. doi: https://doi.org/10.37600/tekinkom.v7i2.1610.
Section
Articles