PENERAPAN INTERNET OF THINGS (IOT) UNTUK OPTIMASI PEMELIHARAAN TANAMAN RUMPUT RAJA SECARA REAL-TIME
Abstract
This study aims to optimize the maintenance of King Grass plants by utilizing Internet of Things (IoT) technology for real-time monitoring. King Grass is known as a source of livestock feed with high productivity, but its maintenance often faces challenges such as environmental fluctuations and inefficient irrigation patterns. This study uses an ESP32 microcontroller integrated with a DHT22 sensor, soil moisture sensor, and automatic water pump, and utilizes the Thingsboard platform to monitor data in real time. The data collected includes air temperature, air humidity, and soil moisture, which are displayed through interactive widgets. The system was tested by simulating various environmental conditions, showing success in automating irrigation based on soil moisture thresholds. The test results show that IoT technology is able to improve plant maintenance efficiency, reduce manual intervention, and ensure optimal conditions for plant growth. The use of the Thingsboard platform facilitates data monitoring and analysis for further planning. This study concludes that the application of IoT to King Grass maintenance provides an effective solution in increasing agricultural productivity through accurate and efficient monitoring and control.
References
[2] A. Syarifudin and E. Hendarto, “Jumlah Batang dan Daun Rumput Raja ( Pennisetum Purpureophoides ) karena Pengaruh Dosis Pupuk Kompos yang Diperkaya Azolla microphylla Number of Stems and Leaves of King Grass ( Pennisetum Purpureophoides ) because Dose Effect of Compost Enriched Azolla m,” J. Anim. Sci. Technol., vol. 3, no. 1, pp. 1–11, 2021.
[3] J. Laksono and W. Ibrahim, “Pengaruh Jenis Dan Dosis Pupuk Kandang terhadap Pertumbuhan Vegetatif Rumput Raja (Pennisetum purpuphoides),” J. Livest. Anim. Heal., vol. 3, no. 1, pp. 23–26, 2020, doi: 10.32530/jlah.v3i1.220.
[4] S. Aritonang, S. D. Rumetor, and O. Yoku, “Pertumbuhan Vegetatif Rumput Raja (Pennisetum purpureophoides) dengan Perlakuan Pupuk Anorganik Dan Organik,” J. Ilmu Peternak. dan Vet. Trop. (Journal Trop. Anim. Vet. Sci., vol. 10, no. 1, p. 29, 2020, doi: 10.46549/jipvet.v10i1.87.
[5] I. W. Suarna, I. K. M. Budiasa, T. I. Putri, N. P. Mariani, and M. Hartawan, “Journal of tropical forage science,” J. Ilmu Tumbuh. Pakan Trop., vol. 6, no. 2, pp. 70–73, 2017.
[6] M. Andrianto, “Penerapan Iot Pada Perawatan Tanaman Di Dalam Rumah,” JATI (Jurnal Mhs. Tek. Inform., vol. 3, no. 1, pp. 173–180, 2019.
[7] Z. Zulhajji, R. T. Mangesa, and K. Karen, “PENERAPAN TEKNOLOGI INTERNET OF THING (IoT) PADA BISNIS BUDIDAYA TANAMAN HIDROPONIK DI KECAMATAN PALLANGGA KABUPATEN GOWA,” J. Media Elektr., vol. 19, no. 2, p. 101, 2022, doi: 10.26858/metrik.v19i2.31537.
[8] P. Dani, P. Adi, N. E. Mustamu, V. Marudut, M. Siregar, and V. Sihombing, “Drone simulation for agriculture and LoRa based approach,” IOTA, vol. 01, no. 4, pp. 221–235, 2021, doi: 10.31763/iota.v1i4.501.
[9] M. M. F. Fatori, “Aplikasi IoT Pada Sistem Kontrol dan Monitoring Tanaman Hidroponik,” J. Pendidik. Sains dan Komput., vol. 2, no. 02, 2022, doi: 10.47709/jpsk.v2i02.1746.
[10] A. K. Nalendra and M. Mujiono, “Perancangan PERANCANGAN IoT (INTERNET OF THINGS) PADA SISTEM IRIGASI TANAMAN CABAI,” Gener. J., vol. 4, no. 2, pp. 61–68, 2020, doi: 10.29407/gj.v4i2.14187.
[11] P. D. P. Adi et al., “A Performance Evaluation of ZigBee Mesh Communication on the Internet of Things (IoT),” 3rd 2021 East Indones. Conf. Comput. Inf. Technol. EIConCIT 2021, pp. 7–13, 2021, doi: 10.1109/EIConCIT50028.2021.9431875.
[12] W. A. Saputra, H. Herlinawati, D. Hestiana, and ..., “Penerapan Internet of Things (Iot) Untuk Otomatisasi Penyiraman Tanaman Cabai,” Poros …, vol. 14, no. 1, pp. 1–9, 2022, [Online]. Available: https://ejurnal.poliban.ac.id/index.php/porosteknik/article/view/1876%0Ahttps://ejurnal.poliban.ac.id/index.php/porosteknik/article/download/1876/1018
[13] P. D. P. Adi et al., “A Performance Evaluation of ZigBee Mesh Communication on the Internet of Things (IoT),” in 2021 3rd East Indonesia Conference on Computer and Information Technology (EIConCIT), Apr. 2021, pp. 7–13. doi: 10.1109/EIConCIT50028.2021.9431875.
[14] A. Kohli, R. Kohli, B. Singh, and J. Singh, “Smart Plant Monitoring System Using IoT Technology,” 2020, pp. 318–366. doi: 10.4018/978-1-5225-9574-8.ch016.
[15] P. D. P. Adi, V. M. M. Siregar, and A. Kitagawa, “Soil moisture sensor based on Internet of Things LoRa,” IOTA, vol. 1, no. 2, pp. 120–132, 2021, doi: 10.31763/iota.v1i2.495.
[16] A. Yanziah, S. Soim, and M. M. Rose, “Analisis Jarak Jangkauan Lora Dengan Parameter Rssi Dan Packet Loss Pada Area Urban,” J. Teknol. Technoscientia, vol. 13, no. 1, pp. 27–34, 2020.
[17] M. P. S. Simbolon, H. Wijanarko, F. Nakul, and R. Mahdaliza, “Penerapan Komunikasi Nirkabel LoRa pada Sistem Pencatat Kehadiran Portabel,” J. Appl. Electr. Eng., vol. 5, no. 2, pp. 30–35, 2021, doi: 10.30871/jaee.v5i2.3096.
[18] M. Sifa’un Ni’am, S. R. Akbar, and R. Maulana, “Monitoring Dan Implementasi Sistem Otomasi Real Time Kualitas Air Tambak Menggunakan Web,” J. Pengemb. Teknol. Inf. dan Ilmu Komput. Univ. Brawijaya, vol. 2, no. 12, pp. 7575–7579, 2018.
[19] Yuswandari and H. Yuana, “Rancang Bangun Sistem Kendali Jarak Jauh Lampu Menggunakan Thingsboard Berbasis Iot,” J. Inform. Polinema, vol. 7, no. 1, pp. 29–36, 2020, doi: 10.33795/jip.v7i1.437.
[20] Y. E. Windarto, B. M. W. Samosir, and M. R. Assariy, “Monitoring Ruangan Berbasis Internet of Things Menggunakan Thingsboard dan Blynk,” Walisongo J. Inf. Technol., vol. 2, no. 2, p. 145, 2020, doi: 10.21580/wjit.2020.2.2.5798.