IDENTIFIKASI POLA TIDUR GENERASI Z (GEN-Z) MENGGUNAKAN ALGORITMA KLUSTERISASI K-MEANS
Abstract
Generation Z faces great challenges in maintaining healthy sleep patterns due to lifestyle changes and high exposure to technology. This study aims to identify the sleep patterns of Generation Z as well as the main factors that affect their sleep quality using the K-Means algorithm. Data was collected from 300 participants through an online questionnaire that included variables such as sleep duration, difficulty sleeping, caffeine consumption, electronic device use, physical activity, and freshness after waking up. With a clustering approach, the results of the study showed that there were three main patterns: irregular sleep patterns (45%), healthy sleep patterns (35%), and poor sleep patterns (20%). The cluster with healthy sleep patterns had an average of 7-8 hours of sleep, high physical activity, and low caffeine consumption, while irregular sleep patterns were less dominated by the use of electronic devices before bedtime, high caffeine consumption, and low physical activity. These findings highlight the importance of lifestyle management in improving the sleep quality of Generation Z and provide a basis for the development of more effective interventions. This study concludes that data-based clustering is a useful method to understand the sleep patterns of a particular population in more depth.
References
[2] K. A. Bartel, M. Gradisar, and P. Williamson, “Protective and risk factors for adolescent sleep: A meta-analytic review,” Jun. 01, 2015, W.B. Saunders Ltd. doi: 10.1016/j.smrv.2014.08.002.
[3] A. J. Krause et al., “The sleep-deprived human brain,” Jul. 01, 2017, Nature Publishing Group. doi: 10.1038/nrn.2017.55.
[4] M. Hysing, S. Haugland, T. Bøe, K. M. Stormark, and B. Sivertsen, “Sleep and school attendance in adolescence: Results from a large population-based study,” Scand J Public Health, vol. 43, no. 1, pp. 2–9, 2015, doi: 10.1177/1403494814556647.
[5] E. Harbard, N. B. Allen, J. Trinder, and B. Bei, “What’s Keeping Teenagers Up? Prebedtime Behaviors and Actigraphy-Assessed Sleep over School and Vacation,” Journal of Adolescent Health, vol. 58, no. 4, pp. 426–432, Apr. 2016, doi: 10.1016/j.jadohealth.2015.12.011.
[6] A. A. Borbély, S. Daan, A. Wirz-Justice, and T. Deboer, “The two-process model of sleep regulation: A reappraisal,” J Sleep Res, vol. 25, no. 2, pp. 131–143, Apr. 2016, doi: 10.1111/jsr.12371.
[7] A. A. Schlarb, D. Kulessa, and M. D. Gulewitsch, “Sleep characteristics, sleep problems, and associations of self-efficacy among German university students,” Nat Sci Sleep, vol. 4, pp. 1–7, 2012, doi: 10.2147/NSS.S27971.
[8] D. J. Maume, “Social Ties and Adolescent Sleep Disruption,” J Health Soc Behav, vol. 54, no. 4, pp. 498–515, Dec. 2013, doi: 10.1177/0022146513498512.
[9] J. P. Chaput, C. Dutil, and H. Sampasa-Kanyinga, “Sleeping hours: What is the ideal number and how does age impact this?,” 2018, Dove Medical Press Ltd. doi: 10.2147/NSS.S163071.
[10] B. Bei, J. F. Wiley, J. Trinder, and R. Manber, “Beyond the mean: A systematic review on the correlates of daily intraindividual variability of sleep/wake patterns,” Aug. 01, 2016, W.B. Saunders Ltd. doi: 10.1016/j.smrv.2015.06.003.
[11] W. Chang et al., “Analysis of university students’ behavior based on a fusion K-means clustering algorithm,” Applied Sciences (Switzerland), vol. 10, no. 18, Sep. 2020, doi: 10.3390/APP10186566.
[12] J. A. Hartigan and M. A. Wong, “Algorithm AS 136: A K-Means Clustering Algorithm,” 1979.
[13] W. W. Kristianto and C. Rudianto, “Penerapan Data Mining Pada Penjualan Produk Menggunakan Metode K-Means Clustering (Studi Kasus Toko Sepatu Kakikaki),” Nov. 2022.
[14] T. Amalina, D. Bima, A. Pramana, and B. N. Sari, “Metode K-Means Clustering Dalam Pengelompokan Penjualan Produk Frozen Food,” Jurnal Ilmiah Wahana Pendidikan, vol. 8, no. 15, pp. 574–583, 2022, doi: 10.5281/zenodo.7052276.
[15] E. A. Saputra and Y. Nataliani, “Analisis Pengelompokan Data Nilai Siswa untuk Menentukan Siswa Berprestasi Menggunakan Metode Clustering K-Means,” Journal of Information Systems and Informatics, vol. 3, no. 3, 2021, [Online]. Available: http://journal-isi.org/index.php/isi
[16] S. Alelyani, J. Tang, and H. Liu, “Feature Selection for Clustering: A Review.”
[17] A. Saxena et al., “A review of clustering techniques and developments,” Neurocomputing, vol. 267, pp. 664–681, Dec. 2017, doi: 10.1016/j.neucom.2017.06.053.
[18] J. Hämäläinen, S. Jauhiainen, and T. Kärkkäinen, “Comparison of internal clustering validation indices for prototype-based clustering,” Algorithms, vol. 10, no. 3, 2017, doi: 10.3390/a10030105.
[19] A. Kassambara, “Multivariate Analysis I Practical Guide To Cluster Analysis in R Unsupervised Machine Learning.” [Online]. Available: http://www.sthda.com
[20] D. Xu and Y. Tian, “A Comprehensive Survey of Clustering Algorithms,” Annals of Data Science, vol. 2, no. 2, pp. 165–193, Jun. 2015, doi: 10.1007/s40745-015-0040-1.
[21] I. A. S. Silvanasari and W. Rosalini, “Perilaku Penggunaan Smartphone, Gaya Hidup, Dan Lingkungan Fisik Berhubungan Dengan Kualitas Tidur Yang Buruk Pada Remaja”.
[22] W. Angkatavanich, N. Chaiburanont, and S. Barrameesangpet, “International Journal of Current Science Research and Review Associations between Duration and Type of Electronic Device Use and Sleep Quality among Bangkok’s High School Students”, doi: 10.47191/ijcsrr/V6-i9-34.
[23] S. Martini, S. Roshifanni, and F. Marzela, “Pola Tidur yang Buruk Meningkatkan Risiko Hipertensi,” Media Kesehatan Masyarakat Indonesia, vol. 14, no. 3, p. 297, Sep. 2018, doi: 10.30597/mkmi.v14i3.4181.
[24] D. Fahturosi, “Dampak Kebiasaan Begadang Terhadap Pola Tidur Dan Kesehatan.”