ANALISIS SENTIMEN ULASAN APLIKASI ”ACCESS BY KAI” MENGGUNAKAN ALGORITMA MACHINE LEARNING
Abstract
The trains have become one of the most popular modes of transportation in Indonesia. In line with technological advancements, PT KAI launched an application called "Access by KAI," which has received various ratings on the Google Play Store. This research aims to analyze user sentiment towards the "Access by KAI" application. The study employs the SEMMA methodology (Sample, Explore, Modify, Model, and Assess) as a framework, utilizing a combination of machine learning algorithms and lexicon-based approaches. Data collection was conducted through web scraping user reviews from the Google Play Store from January to June 2024, resulting in 9,124 reviews. The best model for sentiment classification in this study is Logistic Regression, achieving an accuracy of 84%, followed by the Random Forest algorithm with an accuracy of 78%, and Naive Bayes with an accuracy of 73%. The results indicate that negative sentiment predominates, suggesting that the "Access by KAI" application requires improvements, particularly in areas that have generated user complaints. Words such as "difficult," "login," "wrong," "payment," and "failed" reflect user frustration related to the login and payment processes, leading to user dissatisfaction. This research is expected to provide insights into user opinions regarding the "Access by KAI" application.
References
[2] S. Herawati, E. Saktiendi, and A. Raihanah, “Analisis Pengaruh Kualitas Pelayanan, Promosi, dan Kemudahan Penggunaan Aplikasi KAI Access terhadap Kepuasan Konsumen PT Kereta Api Indonesia (Persero),” Formosa J. Multidiscip. Res., vol. 1, no. 6, pp. 1391–1406, 2022, doi: 10.55927/fjmr.v1i6.1436.
[3] A. P. Risandra, A. Nurdin, and Y. M. Said, “Persepsi Masyarakat terhadap Penggunaan Transportasi Online Grab di Kota Jambi,” J. Talent. Sipil, vol. 6, no. 1, p. 1, 2023, doi: 10.33087/talentasipil.v6i1.207.
[4] E. Pratama, S.D., & Syaodih, “Analisis Perilaku Konsumen dalam Memanfaatkan Aplikasi KAI Access,” Serv. Manag. Triangle J. Manaj. Jasa, vol. 3, no. 1, pp. 20–27, 2021, [Online]. Available: http://ejurnal.ars.ac.id/index.php/jsj 27
[5] A. Nioga, K. C. Brata, and L. Fanani, “Evaluasi Usability Aplikasi Mobile KAI Access Menggunakan Metode System Usability Scale (SUS) Dan Discovery Prototyping (Studi Kasus PT KAI),” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 3, no. 2, pp. 1396–1402, 2019, [Online]. Available: https://j-ptiik.ub.ac.id/index.php/j-ptiik/article/view/4384
[6] W. Nugroho, “Evaluasi Kualitas Digital Payment OVO Berdasarkan Faktor Usability Standar ISO/IEC 9126,” Indones. J. Comput. Sci., vol. 1, no. 1, pp. 14–19, 2022, doi: 10.31294/ijcs.v1i1.1123.
[7] Tommy Suhendra, B. Intan, and A. T. Martadinata, “ANALISIS SENTIMEN PENGGUNA APLIKASI NETFLIX PADA ULASAN GOOGLE PLAYSTORE MENGGUNAKAN METODE NAÏVE BAYES Tommy,” ESCAF 3rd, vol. 2, pp. 1011–1022, 2024.
[8] G. Sanjaya and K. M. Lhaksmana, “Lexicon Based ).,” vol. 7, no. 3, pp. 9698–9710, 2020.
[9] F. T. Saputra, S. H. Wijaya, Y. Nurhadryani, and Defina, “Lexicon Addition Effect on Lexicon-Based of Indonesian Sentiment Analysis on Twitter,” in 2020 International Conference on Informatics, Multimedia, Cyber and Information System (ICIMCIS), 2020, pp. 136–141. doi: 10.1109/ICIMCIS51567.2020.9354269.
[10] Z. Turner, K. Labille, and S. Gauch, “Lexicon-based sentiment analysis for stock movement prediction,” J. Constr. Mater., vol. 2, no. 3, pp. 3–5, 2021, doi: 10.36756/jcm.v2.3.5.
[11] P. Agusia, M. Uli, A. Manurung, V. Calista, and V. C. Mawardi, “Pemanfaatan Word Cloud Pada Analisis Sentimen Dalam Menggali Persepsi Publik,” pp. 25–30, 2024.
[12] D. Normawati and S. A. Prayogi, “Implementasi Naïve Bayes Classifier Dan Confusion Matrix Pada Analisis Sentimen Berbasis Teks Pada Twitter,” J. Sains Komput. Inform. (J-SAKTI, vol. 5, no. 2, pp. 697–711, 2021.
[13] F. V. Sari and A. Wibowo, “Analisis Sentimen Pelanggan Toko Online Jd.Id Menggunakan Metode Naïve Bayes Classifier Berbasis Konversi Ikon Emosi,” J. SIMETRIS, vol. 10, no. 2, pp. 681–686, 2019.
[14] F. Sulianta, “Basic Data Mining from A to Z - Dasar Membangun Tindakan Bisnis,” no. July, p. 132, 2023, [Online]. Available: https://books.google.co.id/books?id=JcLhEAAAQBAJ&
[15] M. Ridho Handoko, “Sistem Pakar Diagnosa Penyakit Selama Kehamilan Menggunakan Metode Naive Bayes Berbasis Web,” J. Teknol. dan Sist. Inf., vol. 2, no. 1, pp. 50–58, 2021, [Online]. Available: http://jim.teknokrat.ac.id/index.php/JTSI
[16] A. Multivariate, B. Studi, K. Ovo, and D. A. N. Gopay, “Analisis sentimen pengguna dompet digital menggunakan algoritma multivariate bernoulli (studi kasus: ovo dan gopay),” vol. 7, pp. 345–351, 2024, doi: 10.37600/tekinkom.v7i1.1223.
[17] S. A. Assaidi and F. Amin, “Analisis Sentimen Evaluasi Pembelajaran Tatap Muka 100 Persen pada Pengguna Twitter menggunakan Metode Logistic Regression,” J. Pendidik. Tambusai, vol. 6, no. 2, pp. 13217–13227, 2022.
[18] Q. R. Cahyani et al., “Prediksi Risiko Penyakit Diabetes menggunakan Algoritma Regresi Logistik Diabetes Risk Prediction using Logistic Regression Algorithm Article Info ABSTRAK,” JOMLAI J. Mach. Learn. Artif. Intell., vol. 1, no. 2, pp. 2828–9099, 2022, doi: 10.55123/jomlai.v1i2.598.
[19] F. A. Larasati, D. E. Ratnawati, and B. T. Hanggara, “Analisis Sentimen Ulasan Aplikasi Dana dengan Metode Random Forest,” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 6, no. 9, pp. 4305–4313, 2022.
[20] A. Wandani, “Sentimen Analisis Pengguna Twitter pada Event Flash Sale Menggunakan Algoritma K-NN, Random Forest, dan Naive Bayes,” J. Sains Komput. Inform. (J-SAKTI, vol. 5, no. 2, pp. 651–665, 2021.