ANALISIS BIG DATA PENJUALAN VIDEO GAMES MENGUNAKAN EDA

  • Davit Toramli Husni Universitas Prima Indonesia
  • Daniel Ryan Hamonangan Sitompul Universitas Prima Indonesia
  • Stiven Hamonangan Sinurat Universitas Prima Indonesia
  • Ruben Ruben Universitas Prima Indonesia
  • Andreas Situmorang Universitas Prima Indonesia
  • Dennis Jusuf Ziegel Universitas Prima Indonesia
  • Julfikar Rahmad Universitas Prima Indonesia
  • Evta Indra Universitas Prima Indonesia

Abstract

Advertising is a very effective way for product marketing, this method is often used to disseminate product information to be marketed. Errors in the analysis of products to be marketed resulted in significant losses to the company due to errors in the exploration of Big Data processing. Big data is described as large-scale data that can be presented, processed and analyzed using existing technologies, methods and theories. Therefore, an assessment of the big data of video game operators that is in demand by the market is carried out to determine the highest and lowest sales of video games using the Exploratory Data Analysis method so that a company can determine the games to be promoted and produced. The results obtained in this study that have the highest and lowest sales of video games in the global market by genre are action at 1745.27 and strategy at 174.5. And for sales by platform, PS2 is 1255.64 and PCFX is 0.03. With this method, video game sales can be presented graphically, making it easier for companies to determine which games to market and promote small game sales.

References

[1] J. Wang, Y. Yang, T. Wang, R. Simon Sherratt, and J. Zhang, “Big data service architecture: A survey,” J. Internet Technol., vol. 21, no. 2, pp. 393–405, 2020, doi: 10.3966/160792642020032102008.

[2] B. Maryanto, “BIG DATA DAN PEMANFAATANNYA DALAM BERBAGAI SEKTOR,” Media Inform., vol. 16, no. 2, 2017.

[3] “5 Game Besar yang Mengalami Kerugian, Ada Cyberpunk 2077!”

[4] “Studi Literatur: Pengertian, Ciri-Ciri, dan Teknik Pengumpulan Datanya.”

[5] V. Melinda and M. Zainil, “Penerapan Model Project Based Learning untuk Meningkatkan Kemampuan Komunikasi Matematis Siswa Sekolah Dasar (Studi Literatur),” J. Pendidik. Tambusai, vol. 4, no. 2, pp. 1526–1539, 2020.

[6] A. P. Mandela, H. L. Guntur, J. T. Mesin, and F. T. Industri, “Data Pada Alat Uji Suspensi,” vol. 1, no. 1, pp. 1–6, 2014.

[7] I. P. Susanto, B. Setiawan, and S. Nurcahyo, “Akuisi Data Pada Stasiun Cuaca Berbasis Nodemcu ESP8266,” J. Elektron. dan Otomasi Ind., vol. 7, no. 1, p. 71, 2021, doi: 10.33795/elkolind.v7i1.182.

[8] “Video Games Sales Dataset | Kaggle.”

[9] I. Guyon, N. Matic, and V. Vapnik, “Discovering informative patterns and data cleaning,” Adv. Knowl. Discov. Data Min., vol. 181, pp. 181–203, 1996.

[10] M. Y. Helmy, Kushartantya, and N. Bahtiar, “Implementasi Data Mining untuk Memprediksi Kelayakan Permintaan Pinjaman Nasabah di Lembaga Keuangan ( Studi Kasus di Koperasi Simpan Pinjam Jasa Kota Pekalongan),” J. Informatics Technol., vol. 2, no. 1, pp. 33–42, 2013.

[11] R. A. Sukamto and M. Shalahuddin, Rekayasa Perangkat Lunak Terstruktur dan Berorientasi Objek, Revisi. Bandung: Informatika Bandung, 2019.

[12] Z. Zhong, “Random erasing data augmentation,” AAAI 2020 - 34th AAAI Conference on Artificial Intelligence. pp. 13001–13008, 2020. [Online]. Available: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85106621386&origin=inward

[13] R. Karthiyayini and D. R. Balasubramanian, “International Journal of Advanced Research in Affinity Analysis and Association Rule Mining using Apriori Algorithm in Market Basket Analysis,” Int. J. Adv. Res. Comput. Sci. Softw. Eng., vol. 6, no. 10, pp. 241–246, 2016.

[14] Saifullah, “Determinasi Motivasi Dan Kinerja Guru Terhadap Kepemimpinan Kepala Sekolah Dan Kompetensi Profesional Guru (Studi Kasus Di Sman Negeri 1 Kota Bima) Literature Review Manajemen Sumber Daya Manusia,” J. Pendidik. Dan Ilmu Sos., vol. 53, no. 9, pp. 1689–1699, 2019, doi: 10.38035/JMPIS.

[15] T. Arletta, “Pra-Rancangan Pabrik Diklorometana dari Metil Klorida dan Klorin Dengan Kapasitas 8.500 Ton/Tahun,” J. Tek. Kim. Univ. Tanjungpura, vol. I, no. 1, pp. 1–6, 2019.

[16] J. Banjarnahor, S. P. Tamba, and Y. Laia, “Pemanfaatan Teknologi Berbasis Android Dalam Pencarian Cepat Tempat Wisata Terdekat Pada Kabupaten Karo,” J. Nas. Inform. dan Teknol. Jar., vol. 5, no. 1, pp. 1–4, 2020, [Online]. Available: https://jurnal.uisu.ac.id/index.php/infotekjar/article/view/2914

[17] V. M. M. Siregar, “Perancangan Website Sebagai Media Promosi Dan Penjualan Produk,” TAM (Technology Accept. Model., vol. 9, no. 1, pp. 15–21, 2018.

[18] E. Manalu, F. A. Sianturi, and M. R. Manalu, “Penerapan Algoritma Naive Bayes Untuk Memprediksi Jumlah Produksi Barang Berdasarkan Data Persediaan Dan Jumlah Pemesanan Pada Cv . Papadan Mama Pastries,” Effrida Manalu Fricles Ariwisanto Sianturi Mamed Rofendy Manalu, vol. 1, no. 2, pp. 16–21, 2017, [Online]. Available: http://e-jurnal.pelitanusantara.ac.id/index.php/mantik/article/view/257

[19] J. Prima, J. Sistem, I. Komputer, V. No, and V. No, “Penerapan Data Mining Algoritma Apriori Dalam Menentukan Stok Bahan Baku Pada Restoran Nelayan,” vol. 5, no. 2, 2022.

[20] J. Simatupang and S. Sianturi, “Perancangan Sistem Informasi Pemesanan Tiket Bus Pada PO. Handoyo Berbasis Online,” J. Intra-Tech, vol. 3, no. 2, pp. 11–25, 2019.

[21] D. Y. Siringoringo, V. Sihombing, and M. Masrizal, “Sistem Informasi Penjualan Dan Persediaan Produk Peralatan Pertanian Berbasis Web,” J. Tek. Inf. dan Komput., vol. 4, no. 1, pp. 54–59, 2021, doi: 10.37600/tekinkom.v4i1.232.
Published
2022-06-30
How to Cite
HUSNI, Davit Toramli et al. ANALISIS BIG DATA PENJUALAN VIDEO GAMES MENGUNAKAN EDA. Jurnal Teknik Informasi dan Komputer (Tekinkom), [S.l.], v. 5, n. 1, p. 43-48, june 2022. ISSN 2621-3079. Available at: <https://jurnal.murnisadar.ac.id/index.php/Tekinkom/article/view/517>. Date accessed: 08 july 2025. doi: https://doi.org/10.37600/tekinkom.v5i1.517.
Section
Articles