ANALISIS PEMBERIAN NUTRISI MENGGUNAKAN METODE FUZZY LOGIC STUDI KASUS TANAMAN CABAI
Abstract
This research addresses the challenges faced by chili farmers in predicting harvest outcomes and providing nutrition according to plant needs. The Fuzzy Logic Mamdani method is proposed as a decision support system to determine the optimal nutrient application volume based on soil conditions, temperature, and acidity level (pH). By synthesizing fuzzy logic, this study aims to assist chili farmers in optimizing harvest results through appropriate nutrient application. The research methodology involves literature review, observation, and data collection to form a dataset with variables such as irrigation volume, soil moisture, temperature, and soil pH. The research results include the formation of fuzzy sets, application of implication functions, rule composition, defuzzification, and irrigation volume calculations. Simulations using the Fuzzy Logic Toolbox show that the Fuzzy Logic Mamdani method can provide predictions of nutrient application volumes that align with chili plant conditions. In testing, when the input variable of water content is 35.6 at a temperature of 30.8 with a soil pH of 3.7, the system recommends an irrigation volume of 204, categorized as high. The findings of this research can serve as a predictive tool to help chili farmers determine the optimal nutrient application volume based on environmental conditions.
References
[2] W. Purba, S. Tamba, and J. Saragih, “The effect of mining data k-means clustering toward students profile model drop out potential,” J. Phys. Conf. Ser., vol. 1007, no. 1, p. 12049, 2018, [Online]. Available: http://stacks.iop.org/1742-6596/1007/i=1/a=012049
[3] S. P. Tamba, A. W. Tan, Y. Gunawan, and ..., “Penerapan Data Mining Untuk Pembuatan Paket Promosi Penjualan Menggunakan Kombinasi Fp-Tree Dan Tid-List,” … (Teknik Inf. dan …, vol. 4, 2021.
[4] S. S. Sitanggang, S. Defit, and M. Ramadhan, “Analisis Optimasi Fungsi Pelatihan Machine Learning Neural Network dalam Peramalan Kemiskinan,” J. Edukasi dan Penelit. Inform., vol. 7, no. 3, p. 359, Dec. 2021, doi: 10.26418/jp.v7i3.50092.
[5] S. S. Sitanggang, Y. Yuhandri, and Adil Setiawan, “Image Transformation With Lung Image Thresholding and Segmentation Method,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 7, no. 2, pp. 278–285, Mar. 2023, doi: 10.29207/resti.v7i2.4321.
[6] S. Sonang, A. T. Purba, and S. Sirait, “PREDIKSI PRESTASI MAHASISWA DENGAN MENGGUNAKAN ALGORITMA BACKPROPAGATION,” J. Tek. Inf. dan Komput., vol. 5, no. 1, p. 67, Jun. 2022, doi: 10.37600/tekinkom.v5i1.512.
[7] S. Sirait et al., “Selection of the Best Administrative Staff Using Elimination Et Choix Traduisant La Realite (ELECTRE) Method,” J. Phys. Conf. Ser., vol. 1933, no. 1, p. 012068, Jun. 2021, doi: 10.1088/1742-6596/1933/1/012068.
[8] V. Sihombing, V. M. M. Siregar, W. S. Tampubolon, M. Jannah, Risdalina, and A. Hakim, “Implementation of simple additive weighting algorithm in decision support system,” IOP Conf. Ser. Mater. Sci. Eng., vol. 1088, no. 1, p. 012014, Feb. 2021, doi: 10.1088/1757-899X/1088/1/012014.
[9] V. Sihombing et al., “Additive Ratio Assessment (ARAS) Method for Selecting English Course Branch Locations,” J. Phys. Conf. Ser., vol. 1933, no. 1, p. 012070, Jun. 2021, doi: 10.1088/1742-6596/1933/1/012070.
[10] Y. Wahyudin and D. N. Rahayu, “Analisis metode pengembangan sistem informasi berbasis website : a literatur review,” J. Interkom J. Publ. Ilm. Bid. Teknol. Inf. dan Komun., vol. 15, no. 3, pp. 26–40, 2020.
[11] S. D. A. Fadillah, T. S. A. Zulaikha, and T. Y. Ilhami, “Peran dan Manfaat Implementasi Information Technology (IT) dalam Audit Internal,” E-Prosiding Natl. Semin. Accounting, Financ. Econ., vol. 1, no. 1, 2021.
[12] V. Marudut, M. Siregar, K. Sinaga, E. Sirait, A. S. Manalu, and M. Yunus, “Classification of Customer Satisfaction Through Machine Learning : An Artificial Neural Network Approach,” IOTA, vol. 03, no. 3, pp. 273–282, 2023, doi: 10.31763/iota.v3i3.643.
[13] V. Marudut and M. Siregar, “Best Employee Selection Using The Additive Ratio Assesment Method,” vol. 03, 2023, doi: 10.31763/iota.v3i1.589.
[14] V. M. M. Siregar and E. D. Siringo-Ringo, “Decision Support System to Determine Scholarship Recipients using Analytical Hierarchy Process Method,” COSTA J. (Computer Sci. Technol. Appl. Journal), vol. 1, no. 1, pp. 39–49, 2023, doi: 10.35335/idss.v4i2.67.
[15] H. Sugara, V. M. M. Siregar, K. Sinaga, M. A. Hanafiah, and H. D. Pardede, “SAW and Electre Methods Implementation for Scholarship Awardee Decision,” IOTA, vol. 01, no. 4, pp. 209–220, 2021, doi: 10.31763/iota.v1i4.496.
[16] Yan Piter Basman Ziraluo & Markus Duha, “DIVERSITY STUDY OF FRUIT PRODUCER PLANT IN NIAS ISLANDS,” Med. J. Tabriz Univ. Med. Sci. Heal. Serv., vol. 42, no. 1, 2020.
[17] R. Oktavianti, Maizar, and Rosmaina, “APLIKASI PCR (Polimerase Chain Reaction) MENGGUNAKAN PRIMER SPESIFIK UNTUK MENDETEKSI CABAI YANG TOLERAN TERHADAP KEKERINGAN,” JUATIKA J. Agron. Tanam. Trop., vol. 1, no. 2, 2019.
[18] F. Tarbiyah and D. Keguruan, “PERTUMBUHAN VEGETATIF TANAMAN CABAI MERAH (Capsicum annum L.) SECARA HIDROPONIK DENGAN NUTRISI PUPUK ORGANIK CAIR DARI KOTORAN KAMBING SKRIPSI Diajukan untuk Melengkapi Tugas-tugas dan Memenuhi Syarat-syarat guna Memperoleh Gelar Sarjana Pendidikan (S.Pd.) dalam Ilmu Pendidikan Biologi Oleh DWI SETIA WATI NPM : 1311060072 Jurusan : Pendidikan Biologi.”
[19] E. Suwandana, R. Rugayah, A. Ardian, and N. Sa’diyah, “KERAGAMAN DAN HERITABILITAS KARAKTER VEGETATIF CABAI MERAH (Capsicum annum L.) VARIETAS LARIS GENERASI M2 HASIL IRADIASI SINAR GAMMA,” J. Agrotek Trop., vol. 8, no. 3, 2020, doi: 10.23960/jat.v8i3.4453.
[20] F. Nurul Laili, T. Kurniastuti, and P. Puspitorini, “RESPON PERTUMBUHAN DAN HASIL TANAMAN CABAI MERAH KERITING (Capsicum annum Var. Longun L.) TERHADAP PEMBERIAN DOSIS PUPUK NPK DAN BOKASHI,” VIABEL J. Ilm. Ilmu-Ilmu Pertan., vol. 14, no. 1, 2020, doi: 10.35457/viabel.v14i1.999.
[21] A. Ulfah and T. Syahar, “Penerapan Metode Fuzzy Sugeno Untuk Optimasi Penggunaan Bandwidth.”
[22] A. Sianipar and K. Handoko, “IMPLEMENTASI FUZZY LOGIC UNTUK SORTASI BUAH TOMAT SECARA OTOMATIS,” J. COMASIE, vol. 3, no. 2, 2020.
[23] Siswaya, Sunardi, and A. Yudhana, “Sistem Pakar Sebagai Pengendali Lampu Lalu-Lintas Pada Persimpangan Jalan Menggunakan Fuzzy Logic Berbasis Android,” Pros. SNST, vol. 9, 2018.
[24] E. R. Y. SAHULATA, H. J. Wattimanela, and M. S. Noya Van Delsen, “PENERAPAN FUZZY INFERENCE SYSTEM TIPE MAMDANI UNTUK MENENTUKAN JUMLAH PRODUKSI ROTI BERDASARKAN DATA JUMLAH PERMINTAAN DAN PERSEDIAAN (STUDI KASUS PABRIK CINDERELA BREAD HOUSE DI KOTA AMBON),” BAREKENG J. Ilmu Mat. dan Terap., vol. 14, no. 1, 2020, doi: 10.30598/barekengvol14iss1pp079-090.
[25] M. N. Halim, A. Zarkasih, A. D. Nastiti, I. Komputer, U. Sriwijaya, and A. P. Parkinson, “Implementasi Logika Fuzzy Pada Sendok Makan Penderita Parkinson,” J. Ilmu Komput. dan Teknol. Inf. Univ. Sriwij., vol. 12, no. 1, 2020.
[26] K. Saputra, M. U. H. Al Rasyid, and M. Z. S. Hadi, “Deteksi Kebocoran Pipa Air Menggunakan Machine Learning dengan Jaringan Nirkabel IEEE 802.15.4,” INOVTEK Polbeng - Seri Inform., vol. 7, no. 1, 2022, doi: 10.35314/isi.v7i1.2360.
[27] F. Hafizh, Y. Maulita, and H. Khair, “Penerapan Logika Fuzzy Logic Pada Enemy Ai Game Horor 3D the Gate of Nightmare Menggunakan Aplikasi Unity3D,” Jikstra, vol. 02, no. 02, 2020.
[28] G. F. Fitriana, “Optimasi Performansi Pengendalian Robot Swarm menggunakan Logika Fuzzy Tipe 2-Particle Swarm Optimazation,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 5, no. 3, 2021, doi: 10.29207/resti.v5i3.3194.
[29] M. M. F. Fatori, “Aplikasi IoT Pada Sistem Kontrol dan Monitoring Tanaman Hidroponik,” J. Pendidik. Sains dan Komput., vol. 2, no. 02, 2022, doi: 10.47709/jpsk.v2i02.1746.
[30] D. R. Setiawan, K. Kustanto, and Y. R. W. Utami, “PENENTUAN JUMLAH PRODUKSI BAJU BATIK DI BATIK MERAK MANIS DENGAN METODE FUZZY MAMDANI,” J. Teknol. Inf. dan Komun., vol. 7, no. 1, 2019, doi: 10.30646/tikomsin.v7i1.417.