ANALISIS METODE ALGORITMA K-NEAREST NEIGHBOR (KNN) DAN NAIVE BAYES UNTUK KLASIFIKASI DIABETES MELLITUS

  • Muhardi Saputra Universitas Prima Indonesia
  • Johannes Putra Sidabuke Universitas Prima Indonesia
  • Ryan Pangeranta Sinulingga Universitas Prima Indonesia
  • Reslina Br Tamba Universitas Prima Indonesia

Abstract

This study aims to compare the performance of two algorithms in detecting diabetes mellitus, which is a metabolic disorder caused by insufficient insulin production by the pancreas. In this research, we used two algorithms, namely Naive Bayes and K-Nearest Neighbor (KNN), to carry out analysis on the diabetes mellitus dataset used. The Naive Bayes algorithm is a statistical algorithm used to classify and predict the probability of certain classes. Meanwhile, the K-Nearest Neighbor (KNN) algorithm is used to classify new objects based on their similarity to nearby objects. This study utilized 9 variables, including number of pregnancies, glucose levels, blood pressure, skin thickness, insulin, Body Mass Index (BMI), family history of diabetes, age, and diagnosis results. The dataset used consists of 2000 data obtained from KAGGLE. The classification process is carried out by importing data into Microsoft Excel, designing the process, and then analyzing the data using Google Colab by applying the K-Nearest Neighbor and Naive Bayes algorithms. The research results show that the K-Nearest Neighbor algorithm provides a higher level of accuracy compared to the Naive Bayes algorithm.

References

[1] D. O. Surya, R. Desnita, P. Studi, D. Keperawatan, and S. M. Padang, “EFEKTIFITAS INTERVENSI PEMBERDAYAAN KELUARGA DENGAN MODEL HOME CARE SERVICE TERHADAP MANAJEMEN DIRI PASIEN DIABETES MELITUS TIPE 2,” vol. 12, no. 7, pp. 70–74, 2023.
[2] D. W. Hestiana, “FAKTOR-FAKTOR YANG BERHUBUNGAN DENGAN KEPATUHAN DALAM PENGELOLAAN DIET PADA PASIEN RAWAT JALAN DIABETES MELLITUS TIPE 2 DI KOTA SEMARANG,” J. Heal. Educ., vol. 42, no. 3, pp. 138–145, 2017.
[3] W. Aser, H. Samosir, and T. Gantini, “Analisis Dataset COVID-19 menggunakan Algoritma KNN dan Random Forest,” J. Strateg. - J. Maranatha, vol. 4, no. 1, pp. 58–69, 2022, [Online]. Available: https://mail.strategi.it.maranatha.edu/index.php/strategi/article/view/325
[4] S. A. Naufal, A. Adiwijaya, and W. Astuti, “Analisis Perbandingan Klasifikasi Support Vector Machine (SVM) dan K-Nearest Neighbors (KNN) untuk Deteksi Kanker dengan Data Microarray,” JURIKOM (Jurnal Ris. Komputer), vol. 7, no. 1, p. 162, 2020, doi: 10.30865/jurikom.v7i1.2014.
[5] Y. Chen et al., “Fast density peak clustering for large scale data based on kNN,” Knowledge-Based Syst., vol. 187, p. 104824, 2020, doi: 10.1016/j.knosys.2019.06.032.
[6] N. A. Sinaga, K. Dalimunthe, and M. Sayid, “Komparasi Metode Decision Tree , KNN , dan SVM Untuk,” J. Sist. Komput. dan Inform., vol. 3, no. 2, pp. 94–100, 2021, doi: 10.30865/json.v3i2.3598.
[7] L. andiani, J. Ilmu Komputer, and D. Palupi Rini, “Analisis Penyakit Jantung Menggunakan Metode KNN Dan Random Forest,” Pros. Annu. Res. Semin., vol. 5, no. 1, pp. 978–979, 2019.
[8] S. Mutrofin, A. Izzah, A. Kurniawardhani, and M. Masrur, “OPTIMASI TEKNIK KLASIFIKASI MODIFIED K NEAREST NEIGHBOR MENGGUNAKAN ALGORITMA GENETIKA,” J. GAMMA, no. September, pp. 130–134, 2014.
[9] H. Mustofa and A. A. Mahfudh, “Klasifikasi Berita Hoax Dengan Menggunakan Metode Naive Bayes,” Walisongo J. Inf. Technol., vol. 1, no. 1, p. 1, Nov. 2019, doi: 10.21580/wjit.2019.1.1.3915.
[10] J. Wu, Z. Cai, S. Zeng, and X. Zhu, “Artificial immune system for attribute weighted Naive Bayes classification,” Proc. Int. Jt. Conf. Neural Networks, no. 61075063, 2013, doi: 10.1109/IJCNN.2013.6706818.
[11] H. T. SIHOTANG, E. Panggabean, and H. Zebua, “Sistem Pakar Mendiagnosa Penyakit Herpes Zoster Dengan Menggunakan Metode Teorema Bayes,” vol. 3, no. 3, pp. 192–196, 2019, doi: 10.31227/osf.io/rjqgz.
[12] A. M. Rahat, A. Kahir, and A. K. M. Masum, “Comparison of Naive Bayes and SVM Algorithm based on Sentiment Analysis Using Review Dataset,” Proc. 2019 8th Int. Conf. Syst. Model. Adv. Res. Trends, SMART 2019, pp. 266–270, 2020, doi: 10.1109/SMART46866.2019.9117512.
[13] H. Brawijaya, S. Samudi, and S. Widodo, “Komparasi Algoritma K-Nearest Neighbor dan Naiive Bayes Pada Pengobatan Penyakit Kutil Menggunakan Cryotheraphy,” JUITA J. Inform., vol. 7, no. 2, pp. 93–100, 2019, doi: 10.30595/juita.v7i2.5609.
[14] A. A. Murtopo, “Prediksi Kelulusan Tepat Waktu Mahasiswa STMIK YMI Tegal Menggunakan Algoritma Naïve Bayes,” CSRID (Computer Sci. Res. Its Dev. Journal), vol. 7, no. 3, p. 145, Jan. 2016, doi: 10.22303/csrid.7.3.2015.145-154.
[15] A. Riani, Y. Susianto, and N. Rahman, “Implementasi Data Mining Untuk Memprediksi Penyakit Jantung Mengunakan Metode Naive Bayes,” J. Innov. Inf. Technol. Appl., vol. 1, no. 01, pp. 25–34, 2019, doi: 10.35970/jinita.v1i01.64.
[16] M. Dhea Noranita, Putri and Tri Basuki, Kurniawan and Edi, Suryanegara and Yesi Novaria, Kunang and Misinem, “Classification of MTI Student Thesis Documents at Bina Darma University Palembang Using Naïve Bayes,” 2022.
[17] I. L. F. Amien, W. Astuti, and K. M. Lhaksamana, “Perbandingan Metode Naïve Bayes dan KNN (K-Nearest Neighbor) dalam Klasifikasi Penyakit Diabetes,” e-Proceeding Eng., vol. 10, no. 2, pp. 1911–1920, 2023.
[18] A. Ridwan, “Penerapan Algoritma Naïve Bayes Untuk Klasifikasi Penyakit Diabetes Mellitus,” J. SISKOM-KB (Sistem Komput. dan Kecerdasan Buatan), vol. 4, no. 1, pp. 15–21, Oct. 2020, doi: 10.47970/siskom-kb.v4i1.169.
[19] R. A. Siallagan and Fitriyani, “Prediksi Penyakit Diabetes Mellitus Menggunakan Algoritma C4.5,” J. Responsif Ris. Sains dan Inform., vol. 3, no. 1, pp. 44–52, 2021, doi: 10.51977/jti.v3i1.407.
[20] M. A. Prof. DR. Lexy J. Moleong, Metodologi penelitian kualitatif. Bandung: PT Remaja Rosdakarya, 2018.
[21] E. Banjarnahor and S. Wangko, “Sel Beta Pankreas Sintesis Dan Sekresi Insulin,” J. Biomedik, vol. 4, no. 3, 2013, doi: 10.35790/jbm.4.3.2012.795.
[22] N. S. Norma Lalla and J. Rumatiga, “Ketikdakstabilan Kadar Glukosa Darah Pada Pasien Diabetes Melitus Tipe II,” J. Ilm. Kesehat. Sandi Husada, vol. 11, pp. 473–479, 2022, doi: 10.35816/jiskh.v11i2.816.
[23] D. L. Olson and D. Delen, Advanced data mining techniques, no. December 2013. 2008. doi: 10.1007/978-3-540-76917-0.
Published
2023-12-29
How to Cite
SAPUTRA, Muhardi et al. ANALISIS METODE ALGORITMA K-NEAREST NEIGHBOR (KNN) DAN NAIVE BAYES UNTUK KLASIFIKASI DIABETES MELLITUS. Jurnal Tekinkom (Teknik Informasi dan Komputer), [S.l.], v. 6, n. 2, p. 723-729, dec. 2023. ISSN 2621-3079. Available at: <https://jurnal.murnisadar.ac.id/index.php/Tekinkom/article/view/942>. Date accessed: 24 june 2024. doi: https://doi.org/10.37600/tekinkom.v6i2.942.
Section
Articles